Lean-direct-injection (LDI) combustion is being considered at the National Energy Technology Laboratory as a means to attain low NOx emissions in a high-hydrogen gas turbine combustor. Integrated gasification combined cycle (IGCC) plant designs can create a high-hydrogen fuel using a water-gas shift reactor and subsequent CO2 separation. The IGCC’s air separation unit produces a volume of N2 roughly equivalent to the volume of H2 in the gasifier product stream, which can be used to help reduce peak flame temperatures and NOx in the diffusion flame combustor. Placement of this diluent in either the air or fuel streams is a matter of practical importance, and it has not been studied to date for LDI combustion. The current work discusses how diluent placement affects diffusion flame temperatures, residence times, and stability limits, and their resulting effects on NOx emissions. From a peak flame temperature perspective, greater NOx reduction should be attainable with fuel dilution rather than air or independent dilution in any diffusion flame combustor with excess combustion air, due to the complete utilization of the diluent as a heat sink at the flame front, although the importance of this mechanism is shown to diminish as flow conditions approach stoichiometric proportions. For simple LDI combustor designs, residence time scaling relationships yield a lower NOx production potential for fuel-side dilution due to its smaller flame size, whereas air dilution yields a larger air entrainment requirement and a subsequently larger flame, with longer residence times and higher thermal NOx generation. For more complex staged-air LDI combustor designs, the dilution of the primary combustion air at fuel-rich conditions can result in the full utilization of the diluent for reducing the peak flame temperature, while also controlling flame volume and residence time for NOx reduction purposes. However, differential diffusion of hydrogen out of a diluted hydrogen/nitrogen fuel jet can create regions of higher hydrogen content in the immediate vicinity of the fuel injection point than can be attained with the dilution of the air stream, leading to increased flame stability. By this mechanism, fuel-side dilution extends the operating envelope to areas with higher velocities in the experimental configurations tested, where faster mixing rates further reduce flame residence times and NOx emissions. Strategies for accurate computational modeling of LDI combustors’ stability characteristics are also discussed.

1.
Vogt
,
R. L.
, 1980, “
Low Btu Coal Gas Combustion in High Temperature Turbines
,”
ASME
Paper No. 80-GT-170.
2.
Beebe
,
K. W.
and
Blanton
,
J. C.
, 1985, “
Design and Development of a Heavy-Duty Industrial Gas Turbine Combustion System for Low-Btu Coal Gas Fuel
,”
ASME
Paper No. 85-GT-45.
3.
Becker
,
B.
, and
Schetter
,
B.
, 1993, “
Use of LHV Gas in a Gas Turbine
,”
Bioresour. Technol.
0960-8524,
46
, pp.
55
64
.
4.
Kelsall
,
G. J.
,
Smith
,
M. A.
, and
Cannon
,
M. F.
, 1994, “
Low Emission Combustor Development for an Industrial Gas Turbine to Utilize LCV Fuel Gas
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
116
, pp.
559
566
.
5.
Battista
,
R. A.
, and
Dudley
,
J. C.
, 1995, “
Full-Scale F Technology Combustor Testing of Simulated Coal Gas
,” DOE Final Report No. DOE-MC/27221-1.
6.
Reiss
,
F.
,
Griffin
,
T.
, and
Reyser
,
K.
, 2002, “
The Alstom GT13E2 Medium BTU Gas Turbine
,”
ASME
Paper No. GT-2002-30108.
7.
Ziemann
,
J.
,
Shum
,
F.
,
Moore
,
M.
,
Kluyskens
,
D.
,
Thomaier
,
D.
,
Zarzalis
,
N.
, and
Eberius
,
H.
, 1998, “
Low-NOx Combustors for Hydrogen Fueled Aero Engine
,”
Int. J. Hydrogen Energy
0360-3199,
23
(
4
), pp.
281
288
.
8.
Tacina
,
R. R.
,
Wey
,
C.
, and
Choi
,
K. J.
, 2001, “
Flame Tube NOx Emissions Using a Lean-Direct-Wall-Injection Combustor Concept
,” Paper No. AIAA-2001-3271.
9.
Tacina
,
R.
,
Wey
,
C.
,
Liang
,
P.
, and
Mansour
,
A.
, 2002, “
A Low NOx Lean-Direct Injection, Multipoint Integrated Module Combustor Concept for Advanced Aircraft Gas Turbines
,”
NASA
Report No. TM-2002-211347.
10.
Hernandez
,
S. R.
,
Wang
,
Q.
,
McDonell
,
V.
,
Mansour
,
A.
,
Steinthorsson
,
E
, and
Hollon
,
B.
, 2008, “
Micro-Mixing Fuel Injectors for Low Emissions Hydrogen Combustion
,”
ASME
Paper No. GT2008-50854.
11.
Hernandez
,
S.
,
Wang
,
Q.
,
Lee
,
H.
,
McDonell
,
V.
,
Hollon
,
B.
,
Mansour
,
A.
, and
Steinthorsson
,
E.
, 2008, “
Micro-Mixing Fuel Injection for Low Emission Combustion of Hydrogen for Gas Turbine Applications
,”
International Pittsburgh Coal Conference
, Pittsburgh, PA.
12.
Dahl
,
G.
, and
Suttrop
,
F.
, 1998, “
Engine Control and Low-NOx Combustion for Hydrogen Fuelled Aircraft Gas Turbines
,”
Int. J. Hydrogen Energy
0360-3199,
23
(
8
), pp.
695
704
.
13.
Marek
,
C. J.
,
Smith
,
T. D.
, and
Kundu
,
K.
, 2005, “
Low Emission Hydrogen Combustors for Gas Turbines Using Lean Direct Injection
,” Paper No. AIAA-2005-3776.
14.
GE Energy
, 2005, “
Premixer Design for High Hydrogen Fuels—Final Report
,” DOE Cooperative Agreement No. DE-FC26-03NT41893.
15.
Todd
,
D. M.
, and
Battista
,
R. A.
, 2000, “
Demonstrated Applicability of Hydrogen Fuel for Gas Turbines
,”
Proceedings of the IChemE “Gasification 4 the Future” Conference
, Noordwijk, The Netherlands.
16.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
, 2005, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
73
80
.
17.
Todd
,
D. M.
, 2000, “
Gas Turbine Improvements Enhance IGCC Viability
,”
Gasification Technologies Conference
, San Francisco, CA.
18.
Cook
,
C. S.
,
Corman
,
J. C.
, and
Todd
,
D. M.
, 1995, “
System Evaluation and LBTU Fuel Combustion Studies for IGCC Power Generation
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
117
, pp.
673
677
.
19.
Rokke
,
P. E.
, and
Hustad
,
J. E.
, 2005, “
Exhaust Gas Recirculation in Gas Turbines for Reduction of CO2 Emissions; Combustion Testing With Focus on Stability and Emissions
,”
Int. J. Thermodyn.
1301-9724,
8
, pp.
167
173
.
20.
Feese
,
J. J.
, and
Turns
,
S. R.
, 1998, “
Nitric Oxide Emissions From Laminar Diffusion Flames: Effect of Air-Side Versus Fuel-Side Diluent Addition
,”
Combust. Flame
0010-2180,
113
, pp.
66
78
.
21.
Lefebvre
,
A. H.
, 1999,
Gas Turbine Combustion
,
2nd ed.
,
Taylor and Francis
,
Ann Arbor
.
22.
ElKady
,
A. M.
,
Evulet
,
A.
,
Brand
,
A.
,
Ursin
,
T. P.
, and
Lynghjem
,
A.
, 2008, “
Exhaust Gas Recirculation in DLN F-Class Gas Turbines for Post-Combustion CO2 Capture
,”
ASME
Paper No. GT2008-51152.
23.
Morley
,
C.
, 2005, “
GASEQ: Chemical Equilibria in Perfect Gases
,” Version 0.79, http://www.gaseq.co.ukhttp://www.gaseq.co.uk
24.
Magnussen
,
B. F.
, 1981, “
On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow
,” Paper No. AIAA-1981-42.
25.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
K.
, and
Dryer
,
F.
, 2004, “
An Updated Comprehensive Kinetic Model of Hydrogen Combustion
,”
Int. J. Chem. Kinet.
0538-8066,
36
(
10
), pp.
566
575
.
26.
Chen
,
R. -H.
, and
Driscoll
,
J. F.
, 1990, “
Nitric Oxide Levels of Jet Diffusion Flames: Effects of Coaxial Air and Other Mixing Parameters
,”
Proc. Combust. Inst.
1540-7489,
23
, pp.
281
288
.
27.
Turns
,
S. R.
, 1995, “
Understanding NOx Formation in Nonpremixed Flames: Experiments and Modeling
,”
Prog. Energy Combust. Sci.
0360-1285,
21
, pp.
361
385
.
28.
Meier
,
W.
,
Prucker
,
S.
,
Cao
,
M. -H.
, and
Stricker
,
W.
, 1996, “
Characterization of Turbulent H2/N2/Air Jet Diffusion Flames by Single-Pulse Spontaneous Raman Scattering
,”
Combust. Sci. Technol.
0010-2202,
118
, pp.
293
312
.
29.
Delichatsios
,
M. A.
, 1993, “
Transition From Momentum to Buoyancy-Controlled Turbulent Jet Diffusion Flames and Flame Height Relationships
,”
Combust. Flame
0010-2180,
92
, pp.
349
364
.
30.
Driscoll
,
J. F.
,
Chen
,
R. -H.
, and
Yoon
,
Y.
, 1992, “
Nitric Oxide Levels of Turbulent Jet Diffusion Flames: Effects of Residence Time and Damköhler Number
,”
Combust. Flame
0010-2180,
88
, pp.
37
49
.
31.
Gabriel
,
R.
,
Navedo
,
J. E.
, and
Chen
,
R. -H.
, 2000, “
Effects of Fuel Lewis Number on Nitric Oxide Emissions of Diluted H2 Turbulent Jet Diffusion Flames
,”
Combust. Flame
0010-2180,
121
, pp.
525
534
.
32.
Dahm
,
W. J. A.
, and
Mayman
,
A. G.
, 1990, “
Blowout Limits of Turbulent Jet Diffusion Flames for Arbitrary Source Conditions
,”
AIAA J.
0001-1452,
28
(
7
), pp.
1157
1162
.
33.
Chen
,
J. -Y.
, and
Kollmann
,
W.
, 1992, “
PDF Modeling and Analysis of Thermal NO Formation in Turbulent Nonpremixed Hydrogen-Air Jet Flames
,”
Combust. Flame
0010-2180,
88
, pp.
397
412
.
34.
Takahashi
,
F.
, and
Schmoll
,
W. J.
, 1990, “
Lifting Criteria of Jet Diffusion Flames
,”
Sym. (Int.) Combust., [Proc.]
,
23
, pp.
677
683
. 1540-7489
35.
Vranos
,
A.
,
Taback
,
E. D.
, and
Shipman
,
C. W.
, 1968, “
An Experimental Study of the Stability of Hydrogen-Air Diffusion Flames
,”
Combust. Flame
0010-2180,
12
, pp.
253
260
.
36.
Halls
,
D. J.
, and
Pungor
,
E.
, 1969, “
An Examination of the Equilibrium Between H and OH Radicals and of Related Effects in Turbulent Hydrogen Flames as Used in Spectrophotometric Methods of Analysis
,”
Anal. Chim. Acta
0003-2670,
44
, pp.
40
50
.
37.
Villarreal
,
R.
, and
Varghese
,
P. L.
, 2005, “
Frequency-Resolved Absorption Tomography With Tunable Diode Lasers
,”
Appl. Opt.
0003-6935,
44
(
31
), pp.
6786
6795
.
You do not currently have access to this content.