Three-dimensional Reynolds-averaged Navier–Stokes (RANS) solutions from CFX were utilized to investigate the leakage flow characteristics in the labyrinth honeycomb seal of steam turbines. At first, the accuracy and reliability of the utilized RANS approach was demonstrated using the published experimental data of the honeycomb seal. It showed that the utilized numerical method has sufficient precision to predict the leakage performance in seals. Then a range of sealing clearances, cell diameters, cell depths, rotation speeds, and pressure ratios were investigated to determine how these factors affect the leakage flow rate of the labyrinth honeycomb seal. The computed leakage flow rate increased with increasing sealing clearance and pressure ratios. Furthermore, the results show that the studied labyrinth honeycomb seal has the optimum sealing performance in the case of honeycomb cell diameter equals labyrinth step width, and the ratio of the honeycomb cell depth to honeycomb cell diameter is 0.93 under the designed condition. The flow pattern of each case is also illustrated to describe the leakage flow characteristics in labyrinth honeycomb seals.

1.
Lakshminarayana
,
B.
, 1996,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley
,
New York
, pp.
339
347
.
2.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
, 2006, “
Sealing in Turbomachinery
,”
J. Propul. Power
0748-4658,
22
(
2
), pp.
313
349
.
3.
Chupp
,
R. E.
,
Ghasripoor
,
F.
,
Turnquist
,
N. A.
,
Demiroglu
,
M.
, and
Aksit
,
M. F.
, 2002, “
Advanced Seals for Industrial Turbine Applications: Dynamic Seal Development
,”
J. Propul. Power
0748-4658,
18
(
6
), pp.
1260
1266
.
4.
Wittig
,
S.
,
Dorr
,
L.
, and
Kim
,
S.
, 1983, “
Scaling Effects on Leakage Losses in Labyrinth Seals
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
105
, pp.
305
309
.
5.
Childs
,
D. W.
, 1993,
Turbomachinery Rotordynamics Phenomena, Modeling, and Analysis
,
Wiley
,
New York
, pp.
290
294
.
6.
Schramm
,
V.
,
Willenborg
,
K.
,
Kim
,
S.
, and
Wittig
,
S.
, 2002, “
Influence of Hoeycomb Facing on the Flow Through Stepped Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
(
1
), pp.
140
146
.
7.
Denecke
,
J.
,
Dullenkopf
,
K.
,
Wittig
,
S.
, and
Bauer
,
H. -J.
, 2005, “
Experimental Investigation of the Total Temperature Increase and Swirl Development in Rotating Labyrinth Seals
,” ASME Paper No. GT2005-68677.
8.
Denecke
,
J.
,
Färber
,
J.
,
Dullenkopf
,
K.
, and
Bauer
,
H. -J.
, 2008, “
Interdependence of Discharge Behavior, Swirl Development and Total Temperature Increase in Rotating Labyrinth Seals
,” ASME Paper No. GT2008-51429.
9.
Stoff
,
H.
, 1980, “
Incompressible Flow in a Labyrinth Seal
,”
J. Fluid Mech.
0022-1120,
100
, pp.
817
829
.
10.
Soto
,
E.
, and
Childs
,
D.
, 1999, “
Experimental Rotordynamic Coefficient Results for a Labyrinth Seal With and Without Shunt Injection and a Honeycomb Seal
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
121
, pp.
153
159
.
11.
Stocker
,
H.
,
Cox
,
D.
,
Holle
,
G.
, 1977, “
Aerodynamic Performance of Conventional and Advanced Design Labyrinth Seals With Solid-Smooth, Abradable and Honeycomb Lands
,”
NASA
Technical Report No. NASA-CR-135307.
12.
Rhode
,
D. L.
, and
Allen
,
B. F.
, 1998, “
Visualization and Measurements of Rub-Groove Leakage Effects on Straight-Through Labyrinth Seals
,” ASME Paper No. 98-GT-506.
13.
Rhode
,
D. L.
, and
Allen
,
B. F.
, 1999, “
Measurement and Visualization of Leakage Effects of Rounded Teeth Tips and Rub-Groove on Stepped Labyrinth Seals
,” ASME Paper No. 99-GT-377.
14.
Wittig
,
S.
,
Schelling
,
U.
,
Jacobsen
,
K.
, and
Kim
,
S.
, 1987, “
Numerical Predictions and Measurements of Discharge Coefficients in Labyrinth Seals
,” ASME Paper No. 87-GT-188.
15.
Choi
,
D. C.
, and
Rhode
,
D. L.
, 2004, “
Development of a Two-Dimensional Computational Fluid Dynamics Approach for Computing Three-Dimensional Honeycomb Labyrinth Leakage
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
794
802
.
16.
Chougule
,
H. H.
,
Ramerth
,
D.
,
Ramchandran
,
D.
, and
Kandala
,
R.
, 2006, “
Numerical Investigation of Worn Labyrinth Seals
,” ASME Paper No. GT2006-90690.
17.
Yan
,
X.
,
Li
,
J.
,
Song
,
L.
, and
Feng
,
Z. P.
, 2008, “
Investigations on the Discharge and Total Temperature Increase Characteristics of the Labyrinth Seals With Honeycomb and Smooth Lands
,”
ASME J. Turbomach.
0889-504X,
131
(
4
), p.
041009
.
18.
Paolillo
,
R.
,
Moore
,
S.
,
Cloud
,
D.
, and
Glahn
,
J. A.
, 2007, “
Impact of Rotational Speed on the Discharge Characteristics of Stepped Labyrinth Seals
,” ASME Paper No. GT2007-28248.
19.
Soemarwoto
,
B. I.
,
Kok
,
J. C.
,
de Cock
,
K. M. J.
,
Kloosterman
,
A. B.
,
Kool
,
G. A.
, and
Versluis
,
J. F. A.
, 2007, “
Performance Evaluation of Gas Turbine Labyrinth Seals Using Computational Fluid Dynamics
,” ASME Paper No. GT2007-27905.
20.
Chougule
,
H. H.
,
Ramerth
,
D.
, and
Ramchandran
,
D.
, , 2008, “
Low Leakage Designs for Rotor Teeth and Honeycomb Lands in Labyrinth Seals
,” ASME Paper No. GT2008-51024.
21.
AEA Technology GmbH
, 2004,
CFX-TASCflow User Documentation
,
AEA Technology, Software Ltd.
,
Waterloo, ON, Canada
.
This content is only available via PDF.
You do not currently have access to this content.