This paper presents numerical simulation results of the primary atomization of a turbulent liquid jet injected into a gaseous crossflow. Simulations are performed using the balanced force refined level set grid method. The phase interface during the initial breakup phase is tracked by a level set method on a separate refined grid. A balanced force finite volume algorithm together with an interface projected curvature evaluation is used to ensure the stable and accurate treatment of surface tension forces even on small scales. Broken off, small scale nearly spherical drops are transferred into a Lagrangian point particle description allowing for full two-way coupling and continued secondary atomization. The numerical method is applied to the simulation of the primary atomization region of a turbulent liquid jet (q=6.6,We=330,Re=14,000) injected into a gaseous crossflow (Re=570,000), analyzed experimentally by Brown and McDonell (2006, “Near Field Behavior of a Liquid Jet in a Crossflow,” ILASS Americas, 19th Annual Conference on Liquid Atomization and Spray Systems). The simulations take the actual geometry of the injector into account. Grid converged simulation results of the jet penetration agree well with experimentally obtained correlations. Both column/bag breakup and shear/ligament breakup modes can be observed on the liquid jet. A grid refinement study shows that on the finest employed grids (flow solver 64 points per injector diameter, level set solver 128 points per injector diameter), grid converged drop sizes are achieved for drops as small as one-hundredth the size of the injector diameter.

1.
Aalburg
,
C.
,
van Leer
,
B.
,
Faeth
,
G. M.
, and
Sallam
,
K. A.
, 2005, “
Properties of Nonturbulent Round Liquid Jets in Uniform Gaseous Cross Flows
,”
Atomization Sprays
1044-5110,
15
(
3
), pp.
271
294
.
2.
Brown
,
C. T.
, and
McDonell
,
V. G.
, 2006, “
Near Field Behavior of a Liquid Jet in a Crossflow
,”
ILASS Americas 19th Annual Conference on Liquid Atomization and Spray Systems
.
3.
Brown
,
C. T.
,
Mondragon
,
U. M.
, and
McDonell
,
V. G.
, 2007, “
Investigation of the Effect of Injector Discharge Coefficient on Penetration of a Plain Liquid Jet Into a Subsonic Crossflow
,”
ILASS Americas 20th Annual Conference on Liquid Atomization and Spray Systems
,
ILASS Americas
,
Chicago, IL
.
4.
Stenzler
,
J. N.
,
Lee
,
J. G.
,
Santavicca
,
D. A.
, and
Lee
,
W.
, 2006, “
Penetration of Liquid Jets in a Cross-Flow
,”
Atomization Sprays
1044-5110,
16
, pp.
887
906
.
5.
Mazallon
,
J.
,
Dai
,
Z.
, and
Faeth
,
G. M.
, 1999, “
Primary Breakup of Nonturbulent Round Liquid Jets in Gas Crossflows
,”
Atomization Sprays
1044-5110,
9
(
3
), pp.
291
312
.
6.
Sallam
,
K. A.
,
Aalburg
,
C.
, and
Faeth
,
G. M.
, 2004, “
Breakup of Round Nonturbulent Liquid Jets in Gaseous Crossflow
,”
AIAA J.
0001-1452,
42
(
12
), pp.
2529
2540
.
7.
Fuller
,
R. P.
,
Wu
,
P. -K.
,
Kirkendall
,
K. A.
, and
Nejad
,
A. S.
, 2000, “
Effects of Injection Angle on Atomization of Liquid Jets in Transverse Ai
,”
AIAA J.
0001-1452,
38
(
1
), pp.
64
72
.
8.
Wu
,
P. K.
,
Kirkendall
,
K. A.
,
Fuller
,
R. P.
, and
Nejad
,
A. S.
, 1997, “
Breakup Processes of Liquid Jets in Subsonic Crossflows
,”
J. Propul. Power
0748-4658,
13
(
1
), pp.
64
73
.
9.
Lee
,
K.
,
Aalburg
,
C.
,
Diez
,
F. J.
,
Faeth
,
G. M.
, and
Sallam
,
K. A.
, 2007, “
Primary Breakup of Turbulent Round Liquid Jets in Uniform Crossflows
,”
AIAA J.
0001-1452,
45
(
8
), pp.
1907
1916
.
10.
Madabhushi
,
R. K.
, 2003, “
A Model for Numerical Simulation of Breakup of a Liquid Jet in Crossflow
,”
Atomization Sprays
1044-5110,
13
(
4
), pp.
413
424
.
11.
Arienti
,
M.
,
Madabhusi
,
R. K.
,
Slooten
,
P. R. V.
, and
Soteriou
,
M. C.
, 2005, “
Numerical Simulation of Liquid Jet Characteristics in a Gaseous Crossflow
,”
ILASS Americas 18th Annual Conference on Liquid Atomization and Spray Systems
.
12.
de Villiers
,
E.
,
Gosman
,
A. D.
, and
Weller
,
H. G.
, 2004, “
Large Eddy Simulation of Primary Diesel Spray Atomization
,” SAE Technical Report No. 2004-01-0100.
13.
Menard
,
T.
,
Beau
,
P. A.
,
Tanguy
,
S.
,
Demoulin
,
F. X.
, and
Berlemont
,
A.
, 2006, “
Primary Break Up Modeling, Part A: Dns, a Tool to Explore Primary Break Up
,” ICLASS-2006, pp.
1
7
, Paper No. ICLASS06-034.
14.
Menard
,
T.
,
Tanguy
,
S.
, and
Berlemont
,
A.
, 2007, “
Coupling Level Set/Vof/Ghost Fluid Methods: Validation and Application to 3d Simulation of the Primary Break-Up of a Liquid Jet
,”
Int. J. Multiph. Flow
,
33
(
5
), pp.
510
524
. 0301-9322
15.
Bianchi
,
G. M.
,
Pelloni
,
P.
,
Toninel
,
S.
,
Scardovelli
,
R.
,
Leboissetier
,
A.
, and
Zaleski
,
S.
, 2007, “
3d Large Scale Simulation of the High-Speed Liquid Jet Atomization
,” SAE Technical Paper No. 2007-01-0244.
16.
Desjardins
,
O.
,
Moureau
,
V.
, and
Pitsch
,
H.
, 2008, “
An Accurate Conservative Level Set/Ghost Fluid Method for Simulating Turbulent Atomization
,”
J. Comput. Phys.
0021-9991,
227
(
18
), pp.
8395
8416
.
17.
Gorokhovski
,
M.
, and
Herrmann
,
M.
, 2008, “
Modeling Primary Atomization
,”
Annu. Rev. Fluid Mech.
0066-4189,
40
(
1
), pp.
343
366
.
18.
Herrmann
,
M.
, 2008, “
A Balanced Force Refined Level Set Grid Method for Two-Phase Flows on Unstructured Flow Solver Grids
,”
J. Comput. Phys.
0021-9991,
227
(
4
), pp.
2674
2706
.
19.
Herrmann
,
M.
, and
Gorokhovski
,
M.
, 2008, “
An Outline of a LES Subgrid Model for Liquid/Gas Phase Interface Dynamics
,”
Proceedings of the 2008 CTR Summer Program
, Center for Turbulence Research, Stanford University, pp.
171
181
.
20.
Herrmann
,
M.
, 2007, “
On Simulating Primary Atomization Using the Refined Level Set Grid Method
,”
ILASS Americas 20th Annual Conference on Liquid Atomization and Spray Systems
,
ILASS Americas
,
Chicago, IL
.
21.
Francois
,
M. M.
,
Cummins
,
S. J.
,
Dendy
,
E. D.
,
Kothe
,
D. B.
,
Sicilian
,
J. M.
, and
Williams
,
M. W.
, 2006, “
A Balanced-Force Algorithm for Continuous and Sharp Interfacial Surface Tension Models Within a Volume Tracking Framework
,”
J. Comput. Phys.
0021-9991,
213
, pp.
141
173
.
22.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, 1992, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
0021-9991,
100
, pp.
335
354
.
23.
Herrmann
,
M.
, 2006, “
Simulating Two-Phase Flows Using the Refined Level Set Grid Method
,”
ILASS Americas 19th Annual Conference on Liquid Atomization and Spray Systems
,
ILASS Americas
,
Toronto, Canada
.
24.
Kim
,
D.
,
Desjardins
,
O.
,
Herrmann
,
M.
, and
Moin
,
P.
, 2007, “
The Primary Breakup of a Round Liquid Jet by a Coaxial Flow of Gas
,”
ILASS Americas 20th Annual Conference on Liquid Atomization and Spray Systems
.
25.
Apte
,
S. V.
,
Gorokhovski
,
M.
, and
Moin
,
P.
, 2003, “
Les of Atomizing Spray With Stochastic Modeling of Secondary Breakup
,”
Int. J. Multiphase Flow
0301-9322,
29
(
9
), pp.
1503
1522
.
26.
Moin
,
P.
, and
Apte
,
S. V.
, 2006, “
Large-Eddy Simulation of Realistic Gas Turbine Combustors
,”
AIAA J.
0001-1452,
44
(
4
), pp.
698
708
.
27.
Jiang
,
G. -S.
, and
Peng
,
D.
, 2000, “
Weighted ENO Schemes for Hamilton-Jacobi Equations
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
21
(
6
), pp.
2126
2143
.
28.
Shu
,
C. W.
, 1988, “
Total-Variation-Diminishing Time Discretization
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
9
(
6
), pp.
1073
1084
.
29.
Alonso
,
J. J.
,
Hahn
,
S.
,
Ham
,
F.
,
Herrmann
,
M.
,
Iaccarino
,
G.
,
Kalitzin
,
G.
,
LeGresley
,
P.
,
Mattsson
,
K.
,
Medic
,
G.
,
Moin
,
P.
,
Pitsch
,
H.
,
Schluter
,
J.
,
Svard
,
M.
,
der Weide
,
E. V.
,
You
,
D.
, and
Wu
,
X.
, 2006, “
CHIMPS: A High-Performance Scalable Module for Multi-Physics Simulation
,”
42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
, AIAA Paper No. 2006-5274.
You do not currently have access to this content.