Alternative resources, such as biomass, and municipal and industrial waste are being considered as a source for the production of syngas to replace natural gas as a power turbine fuel. Pyrolysis of biomass produces a syngas composed primarily of CO, CO2, CH4, and H2 with a medium-low lower heating value that is strongly dependent on the process boundary conditions such as the pyrolysis temperature and product residence time in the reactor. The issues associated with conventional gas turbines also apply to syngas turbines with the added complexity of the fuel and impurities. At present, syngas turbines are operated at firing temperatures similar to those of turbines fired on natural gas by increasing the fuel mass flow through the turbine. While this produces a higher turbine power output, the heat transferred to the hot flow-path vanes and blades is also greater. The aim of this paper is to report on the use of numerical modeling to analyze the fundamental impact of firing gas turbines with biomass pyrolysis syngas. To complete the analysis, the results have been compared with data from the literature on gas turbines fired with coal gasification syngas. The test engine used to perform this analysis is a General Electric GE10-2 gas turbine. The performance, aerodynamics and secondary flows were computed using proprietary software, while a commercial finite element software was used to perform the thermal and local creep analyses.

1.
International Energy Agency (IEA)
, 2008, “
Key World Energy Statistics
.”
2.
Solantausta
,
Y.
,
Bridgwater
,
A. V.
, and
Beckman
,
D.
, 1995, “
Feasibility of Power Production With Pyrolysis and Gasification Systems
,”
Biomass Bioenergy
0961-9534,
9
(
1
), pp.
257
269
.
3.
Fantozzi
,
F.
,
D’Alessandro
,
B.
, and
Desideri
,
U.
, 2005, “
Integrated Pyrolysis Recuperated Plant (IPRP): An Efficient and Scalable Concept for Gas Turbine Based Energy Conversion From Biomass and Waste
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
(
2
), pp.
348
357
.
4.
Fantozzi
,
F.
,
Di Maria
,
F.
, and
Desideri
,
U.
, 2002, “
Integrated Micro-Turbine and Rotary Kiln Pyrolysis System as a Waste to Energy Solution for a Small Town in Central Italy—Cost Positioning and Global Warming Assessment
,” ASME Paper No. GT-2002-30652.
5.
Levie
,
B.
,
Diebold
,
J. P.
, and
West
,
R.
, 1988,
Research on Thermochemical Biomass Conversion
,
A. V.
Bridgwater
and
J. L.
Kuester
, eds.,
Elsevier
,
London
, p.
312
.
6.
Diebold
,
J.
,
Evans
,
R.
, and
Scahill
,
J.
, 1990,
Energy From Biomass and Wastes
, Vol.
13
, p.
851
.
7.
Whitty
,
K. J.
,
Zhang
,
H. R.
, and
Eddings
,
E. G.
, 2008, “
Emissions From Syngas Combustion
,”
Combust. Sci. Technol.
0010-2202,
180
(
6
), pp.
1117
1136
.
8.
Avenell
,
C. S.
,
Griffiths
,
A. J.
, and
Syred
,
N.
, 1993,
IEEE Clean Power 2000 Conference Proceedings
, London.
9.
Li
,
A. M.
,
Li
,
X. D.
,
Li
,
S. Q.
,
Ren
,
Y.
,
Shang
,
N.
,
Chi
,
Y.
,
Yan
,
J. H.
, and
Cen
,
K. F.
, 1999, “
Experimental Studies on Municipal Solid Waste Pyrolysis in a Laboratory—Scale Rotary Kiln
,”
Energy
0360-5442,
24
, pp.
209
218
.
10.
Fantozzi
,
F.
,
Colantoni
,
S.
,
Bartocci
,
P.
, and
Desideri
,
U.
, 2007, “
Rotary Kiln Slow Pyrolysis for Syngas and Char Production From Biomass and Waste—Part 1: Working Envelope of the Reactor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
(
4
), pp.
901
907
.
11.
Fantozzi
,
F.
,
Colantoni
,
S.
,
Bartocci
,
P.
, and
Desideri
,
U.
, 2007, “
Rotary Kiln Slow Pyrolysis for Syngas and Char Production From Biomass and Waste—Part 2: Introducing Product Yields in the Energy Balance
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
(
4
), pp.
908
913
.
12.
Fantozzi
,
F.
, and
Desideri
,
U.
, 2004, “
Micro Scale Rotary Kiln Slow-Pyrolysis for Syngas and Char Production From Biomass and Waste. Reactor and Test Bench Realization
,” ASME Paper No. GT 2004-54186.
13.
Fantozzi
,
F.
,
D’Alessandro
,
B.
, and
Desideri
,
U.
, 2007, “
An IPRP (Integrated Pyrolysis Regenerated Plant) Microscale Demonstrative Unit in Central Italy
,” ASME Paper No. GT 2007-28000.
14.
Browne
,
F. L.
, 1958, “Theories on the Combustion of Wood and Its Control,” U.S. Forest Products Laboratory, Madison, WI, Report No. 2136.
15.
Onay
,
O.
, and
Mete Kockar
,
O.
, 2003, “
Slow, Fast and Flash Pyrolysis of Rapeseed
,”
Renewable Energy
0960-1481,
28
, pp.
2417
2433
.
16.
Bridgwater
,
A. V.
, and
Peacocke
,
G. V. C.
, 2000, “
Fast Pyrolysis Processes for Biomass
,”
Renewable Sustainable Energy Rev.
1364-0321,
4
, pp.
1
73
.
17.
Sensoz
,
S.
,
Demiral
,
I.
, and
Gercel
,
H. F.
, 2006, “
Olive Bagasse Pyrolysis
,”
Bioresour. Technol.
0960-8524,
97
(
3
), pp.
429
436
.
18.
Shen
,
L.
, and
Zhang
,
D. K.
, 2003, “
An Experimental Study of Oil Recovery From Sewage Sludge by Low Temperature Pyrolysis in a Fluidised-Bed
,”
Fuel
0016-2361,
82
(
4
), pp.
465
472
.
19.
Li
,
S.
,
Xu
,
S.
,
Liu
,
S.
,
Yang
,
C.
, and
Lu
,
O.
, 2004, “
Fast Pyrolysis in Free-Fall Reactor for Hydrogen-Rich Gas
,”
Fuel Process. Technol.
0378-3820,
85
, pp.
1201
1211
.
20.
Demirbas
,
A.
, 2004, “
Effect of Initial Moisture Content on the Yields of Oily Products From Pyrolysis of Biomass
,”
J. Anal. Appl. Pyrolysis
0165-2370,
71
(
2
), pp.
803
815
.
21.
Fagbemi
,
L.
,
Khezami
,
L.
, and
Capart
,
R.
, 2001, “
Pyrolysis Products From Different Biomasses: Application to the Thermal Cracking of Tar
,”
Appl. Energy
0306-2619,
69
, pp.
293
306
.
22.
Colladay
,
R. S.
, 1994, “
Turbine Cooling
,”
Turbine Design and Application
, Vol. III, NASA Report No. SP-290.
23.
Holman
,
J. P.
, 1968,
Heat Transfer
, 2nd ed.,
McGraw-Hill
,
New York
.
24.
Kreith
,
F.
, and
Bohn
,
M. S.
, 1986,
Principles of Heat Transfer
, 4th ed.,
Harper & Row
,
New York
.
25.
Oluyede
,
E. O.
, and
Phillips
,
J. N.
, 2007, “
Fundamental Impact of Firing Syngas in Gas Turbines
,” ASME Paper No. GT2007-27385.
26.
Larson
,
F. R.
, and
Miller
,
J.
, 1952, “
A Time-Temperature Relationship for Rupture and Creep Stress
,”
Trans. ASME
0097-6822,
74
, pp.
765
775
.
You do not currently have access to this content.