Abstract

The performance of heavy duty gas turbines is closely related to the material capability of the components of the first turbine stage. In modern gas turbines single crystal (SX) and directionally solidified (DS) nickel superalloys are applied, which, compared with their conventionally cast version, hold a higher cyclic life and a significantly improved creep rupture strength. SX and DS nickel superalloys feature a significant directional dependence of the material properties. To fully exploit the material capability, the anisotropy needs to be accounted for in both the constitutive and lifing model. In this context, the paper addresses a cyclic life prediction procedure for DS materials with transverse isotropic material symmetry. Thereby, the well-known local approaches to fatigue life prediction of isotropic materials under uniaxial loading are extended toward materials with transverse isotropic properties under multiaxial load conditions. As part of the proposed methodology, a Hill type function is utilized for describing the anisotropic failure behavior. The coefficients of the Hill surface are determined from the actual multiaxial loading, material symmetry, and anisotropic fatigue strength of the material. In this paper we first characterize the anisotropy of DS superalloys. We then present the general mathematical framework of the proposed lifing procedure. Later we discuss a validation of the cyclic life model by comparing the measured and predicted fatigue lives of the test specimens. Finally, the proposed method is applied to the cyclic life prediction of a gas turbine blade.

1.
Krückels
,
J.
,
Arzel
,
T.
,
Kingston
,
T. R.
, and
Schnieder
,
M.
, 2007, “
Turbine Blade Thermal Design Process Enhancements for Increased Firing Temperatures and Reduced Coolant Flow
,” ASME Paper No. GT2007-27457.
2.
Sims
,
C. T.
,
Stoloff
,
N. S.
, and
Hagel
,
W. C.
, 1987,
Superalloys II, High Temperature Materials for Aerospace and Industrial Power
,
Wiley
,
New York
.
3.
Mücke
,
R.
, and
Bernhardi
,
O. -E.
, 2003, “
A Constitutive Model for Anisotropic Materials Based on Neuber’s Rule
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
4237
4255
.
4.
Robinson
,
D. N.
, 1984, “
Constitutive Relationships for Anisotropic High-Temperature Alloys
,”
Nucl. Eng. Des.
0029-5493,
83
, pp.
389
396
.
5.
Suresh
,
S.
, 1994,
Fatigue of Materials
,
Cambridge University Press
,
Cambridge
.
6.
Tipton
,
S. M.
, and
Nelson
,
D. V.
, 1997, “
Advances in Multiaxial Fatigue Life Prediction for Components With Stress Concentrations
,”
Int. J. Fatigue
0142-1123,
19
, pp.
503
515
.
7.
Schütz
,
W.
, 1996, “
A History of Fatigue
,”
Eng. Fract. Mech.
0013-7944,
54
, pp.
263
300
.
8.
Wang
,
Y. -Y.
, and
Yao
,
W. -X.
, 2004, “
Evaluation and Comparison of Several Multiaxial Fatigue Criteria
,”
Int. J. Fatigue
0142-1123,
26
, pp.
17
25
.
9.
Schijve
,
J.
, 2003, “
Fatigue of Structures and Materials in the 20th Century and the State of the Art
,”
Int. J. Fatigue
0142-1123,
25
, pp.
679
702
.
10.
Cowin
,
S. C.
, and
Mehrabadi
,
M. M.
, 1995, “
Anisotropic Symmetries of Linear Elasticity
,”
Appl. Mech. Rev.
0003-6900,
48
(
5
), pp.
247
285
.
11.
Lemaitre
,
J.
, and
Chaboche
,
J. -L.
, 1990,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge
.
12.
Kuhn
,
H. -A.
, and
Sockel
,
H. -G.
, 1989, “
Elastic Properties of Textured and Directionally Solidified Nickel-Based Superalloys Between 25 and 1200°C
,”
Mater. Sci. Eng., A
0921-5093,
112
, pp.
117
126
.
13.
Hasebe
,
T.
,
Sakane
,
M.
, and
Ohnami
,
M.
, 1992, “
Elastic Anisotropy of Directionally Solidified Superalloys
,”
ASME J. Eng. Mater. Technol.
0094-4289,
114
, pp.
141
148
.
14.
Hasebe
,
T.
,
Sakane
,
M.
, and
Ohnami
,
M.
, 1992, “
High Temperature Low Cycle Fatigue and Cyclic Constitutive Relation of Mar-M247 Directionally Solidified Superalloy
,”
ASME J. Eng. Mater. Technol.
0094-4289,
114
, pp.
162
167
.
15.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes
,
Cambridge University Press
,
Cambridge
.
16.
Lemaitre
,
J.
, 1996,
A Course on Damage Mechanics
, 2nd ed.,
Springer
,
New York
.
17.
Olschewski
,
J.
,
Haftaoglu
,
C.
, and
Noack
,
H. -D.
, 1993, “
Thermo-Mechanical 3D-FE-Analysis of a Cooled Turbine Blade Using an Unified Constitutive Model
,”
Proceedings of the Post-SMiRT Seminar No. 5, Inelastic Analysis, Fatigue and Life Prediction
, Paris, France.
18.
Mücke
,
R.
, 1998, “
Finite Element Methods for the Structural Analysis of Gas Turbine Blades
,”
Proceedings of the 25th Finite Element Congress
, Baden-Baden, Nov. 16–17, 1998.
You do not currently have access to this content.