One of the alkanes found within gaseous fuel blends of interest to gas turbine applications is butane. There are two structural isomers of butane, normal butane and isobutane, and the combustion characteristics of either isomer are not well known. Of particular interest to this work are mixtures of n-butane and isobutane. A shock-tube experiment was performed to produce important ignition-delay-time data for these binary butane isomer mixtures, which are not currently well studied, with emphasis on 50-50 blends of the two isomers. These data represent the most extensive shock-tube results to date for mixtures of n-butane and isobutane. Ignition within the shock tube was determined from the sharp pressure rise measured at the end wall, which is characteristic of such exothermic reactions. Both experimental and kinetics modeling results are presented for a wide range of stoichiometries (ϕ=0.32.0), temperatures (1056–1598 K), and pressures (1–21 atm). The results of this work serve as a validation for the current chemical kinetics model. Correlations in the form of Arrhenius-type expressions are presented, which agree well with both the experimental results and the kinetics modeling. The results of an ignition-delay-time sensitivity analysis are provided, and key reactions are identified. The data from this study are compared with the modeling results of 100% normal butane and 100% isobutane. The 50/50 mixture of n-butane and isobutane was shown to be more readily ignitable than 100% isobutane but reacts slower than 100% n-butane only for the richer mixtures. There was little difference in ignition time between the lean mixtures.

1.
Richards
,
G. A.
,
McMillian
,
M. M.
,
Gemmen
,
R. S.
,
Rogers
,
W. A.
, and
Cully
,
S. R.
, 2001, “
Issues for Low-Emission, Fuel Flexible Power Systems
,”
Prog. Energy Combust. Sci.
0360-1285,
27
, pp.
141
169
.
2.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
, 2008, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition and Stability
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
, p.
011506
.
3.
Von Richer
,
V.
, 1947,
Chemistry of the Carbon Compounds; Or, Organic Chemistry
,
Blakiston
,
New York
, p.
74
.
4.
Ogura
,
T.
,
Nagumo
,
Y.
,
Miyoshi
,
A.
, and
Koshi
,
M.
, 2007, “
Chemical Kinetic Mechanism for High Temperature Oxidation of Butane Isomers
,”
Energy Fuels
0887-0624,
21
, pp.
130
135
.
5.
Griffiths
,
J. F.
,
Halford-Maw
,
P. A.
, and
Rose
,
D. J.
, 1993, “
Fundamental Features of Hydrocarbon Autoignition in a Rapid Compression Machine
,”
Combust. Flame
0010-2180,
95
, pp.
291
306
.
6.
Minetti
,
R.
,
Ribaucour
,
M.
,
Carlier
,
M.
,
Fittschen
,
C.
, and
Sochet
,
L. R.
, 1994, “
Experimental and Modeling Study of Oxidation and Autoignition of Butane at High Pressure
,”
Combust. Flame
0010-2180,
96
, pp.
201
211
.
7.
Pitz
,
W. J.
, and
Westbrook
,
C. K.
, 1986, “
Chemical Kinetics of the High Pressure Oxidation of n-Butane and Its Relation to Engine Knock
,”
Combust. Flame
0010-2180,
63
, pp.
113
133
.
8.
Fotache
,
C. G.
,
Wang
,
H.
, and
Law
,
C. K.
, 1999, “
Ignition of Ethane, Propane, and Butane in Counter Flow Jets of Cold Fuel Versus Hot Air Under Variable Pressures
,”
Combust. Flame
0010-2180,
117
, pp.
777
794
.
9.
Chandraratna
,
M. R.
, and
Griffiths
,
J. F.
, 1994, “
Pressure and Concentration Dependence of the Autoignition Temperature for Normal Butane+Air Mixtures in a Closed Vessel
,”
Combust. Flame
0010-2180,
99
, pp.
626
634
.
10.
Kojima
,
S.
, 1994, “
Detailed Modeling of n-Butane Autoignition Chemistry
,”
Combust. Flame
0010-2180,
99
, pp.
87
136
.
11.
Smith
,
J. R.
,
Green
,
R. M.
,
Westbrook
,
C. K.
, and
Pitz
,
W. J.
, 1984, “
Experimental and Modeling Study of Engine Knock
,”
20th International Symposium on Combustion
, The Combustion Institute, Pittsburgh, p.
91
.
12.
Proudler
,
V. K.
,
Cederbalk
,
P.
,
Horowitz
,
A.
,
Hughes
,
K. J.
, and
Pilling
,
M. J.
, 1991, “
Oscillatory Ignitions and Cool Flames in the Oxidation of Butane in a Jet-Stirred Reactor
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
337
(
1646
), pp.
211
221
.
13.
Yudai
,
Y.
, and
Norimasa
,
I.
, 2003, “
Numerical Analysis of Autoignition and Combustion of n-Butane and Air Mixtures in Homogeneous-Charge Compression-Ignition Engine Using Elementary Reactions
,”
JSME Int. J., Ser. B
1340-8054,
46
, pp.
52
59
.
14.
Burcat
,
A.
,
Scheller
,
K.
, and
Lifshitz
,
A.
, 1971, “
Shock-Tube Investigation of Comparative Ignition Delay Times for C1-C5 Alkanes
,”
Combust. Flame
0010-2180,
16
, pp.
29
33
.
15.
Buda
,
F.
,
Bounaceur
,
R.
,
Warth
,
V.
,
Glaude
,
P. A.
,
Fournet
,
R.
, and
Battin-Leclerc
,
F.
, 2005, “
Progress Toward a Unified Detailed Kinetic Model for the Autoignition of Alkanes From C4 to C10 Between 600 and 1200 K
,”
Combust. Flame
0010-2180,
142
, pp.
170
186
.
16.
Wilk
,
R. D.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
,
Addagarla
,
S.
,
Miller
,
D. L.
,
Cernansky
,
N. P.
, and
Green
,
R. M.
, 1990, “
Combustion of n-Butane and Iso-Butane in an Internal Combustion Engine: A Comparison of Experimental and Modeling Results
,”
Sym. (Int.) Combust., [Proc.]
,
23
, pp.
1047
1056
. 1540-7489
17.
Kojima
,
S.
, and
Suzuoki
,
T.
, 1993, “
Autoignition-Delay Measurement Over Lean to Rich Mixtures of n-Butane/Air Under Swirl Conditions
,”
Combust. Flame
0010-2180,
92
, pp.
254
265
.
18.
Griffiths
,
J. F.
, and
Nimmo
,
W.
, 1985, “
Spontaneous Ignition and Engine Knock Under Rapid Compression
,”
Combust. Flame
0010-2180,
60
, pp.
215
218
.
19.
Pekalski
,
A. A.
,
Terli
,
E.
,
Zevenbergen
,
J. F.
,
Lemkowitz
,
S. M.
, and
Pasman
,
H. J.
, 2005, “
Influence of the Ignition Delay Time on the Explosion Parameters of Hydrocarbon-Air-Oxygen Mixtures at Elevated Pressure and Temperature
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
1933
1969
.
20.
Marengo
,
S.
,
Comotti
,
P.
, and
Galli
,
G.
, 2003, “
New Insight Into the Role of Gas Phase Reaction in the Partial Oxidation of Butane
,”
Catal. Today
0920-5861,
81
, pp.
205
213
.
21.
Morley
,
C.
, 1987, “
A Fundamentally Based Correlation Between Alkane Structure and Octane Number
,”
Combust. Sci. Technol.
0010-2202,
55
, pp.
115
123
.
22.
Lund
,
C. M.
, and
Chase
,
L.
, 1995, “
HCT-A General Computer Program for Calculating Time-Dependent Phenomena Involving One-Dimensional Hydrodynamics, Transport, and Detailed Chemical Kinetics
,”
Lawrence Livermore National Laboratory
, Report No. UCRL-52504.
23.
Healy
,
D.
,
Curran
,
H. J.
,
Dooley
,
S.
,
Simmie
,
J. M.
,
Kalitan
,
D. M.
,
Petersen
,
E. L.
, and
Bourque
,
G.
, 2008, “
Methane/Propane Mixture Oxidation at High Pressures and at High, Intermediate and Low Temperatures
,”
Combust. Flame
0010-2180,
155
, pp.
451
461
.
24.
Healy
,
D.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Kalitan
,
D. M.
,
Zinner
,
C. M.
,
Barrett
,
A. B.
,
Petersen
,
E. L.
, and
Bourque
,
G.
, 2008, “
Methane/Ethane/Propane Mixture Oxidation at High Pressures and at High, Intermediate and Low Temperatures
,”
Combust. Flame
0010-2180,
155
, pp.
441
448
.
25.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
, 1987,
Sandia National Laboratories
, Report No. SAND87-8217.
26.
Ritter
,
E. R.
, and
Bozzelli
,
J. W.
, 1991, “
THERM: Thermodynamic Property Estimation for Gas Phase Radicals and Molecules
,”
Int. J. Chem. Kinet.
0538-8066,
23
, pp.
767
778
.
27.
Lay
,
T.
,
Bozzelli
,
J. W.
,
Dean
,
A. M.
, and
Ritter
,
E. R.
, 1995, “
Hydrogen Atom Bond Increments for Calculation of Thermodynamic Properties of Hydrocarbon Radical Species
,”
J. Phys. Chem.
0022-3654,
99
, pp.
14514
14527
.
28.
Sumathi
,
R.
, and
Green
,
W. H.
, Jr.
, 2003, “
Oxygenate, Oxyalkyl, and Alkoxycarbonyl Thermochemistry and Rates for Hydrogen Abstraction From Oxygenates
,”
Phys. Chem. Chem. Phys.
1463-9076,
5
, pp.
3402
3417
.
29.
Healy
,
D.
,
Curran
,
H. J.
,
Petersen
,
E. L.
,
Aul
,
C. J.
,
Zinner
,
C. M.
, and
Bourque
,
G.
, 2009, “
n-Butane: Ignition Delay Measurements at High Pressure and Detailed Chemical Kinetic Simulations
,”
Combust. Flame
0010-2180, submitted.
30.
Petersen
,
E. L.
,
Rickard
,
M. J. A.
,
Crofton
,
M. D.
,
Abbey
,
E. D.
,
Traum
,
M. J.
, and
Kalitan
,
D. M.
, 2005, “
A Facility for Gas- and Condensed-Phase Measurements Behind Shock Waves
,”
Meas. Sci. Technol.
0957-0233,
16
, pp.
1716
1729
.
31.
Aul
,
C. J.
,
de Vries
,
J.
, and
Petersen
,
E. L.
, 2007, “
New Shock-Tube Facility for Studies in Chemical Kinetics at Engine Conditions
,”
Eastern States Fall Technical Meeting of the Combustion Institute
, Charlottesville, VA, Oct. 21–24.
32.
Petersen
,
E.
,
Lamnaouer
,
M.
,
de Vries
,
J.
,
Curran
,
H.
,
Simmie
,
J.
,
Fikri
,
M.
,
Schulz
,
C.
, and
Bourque
,
G.
, 2007, “
Discrepancies Between Shock Tube and Rapid Compression Machine Ignition at Low Temperatures and High Pressures
,”
26th International Symposium on Shock Waves
, Göttingen, Germany, Paper No. 0911.
33.
Kee
,
R. J.
,
Rupley
,
F. M.
,
Miller
,
J. A.
,
Coltrin
,
M. E.
,
Grcar
,
J. F.
,
Meeks
,
E.
,
Moffat
,
H. K.
,
Lutz
,
A. E.
,
Dixon-Lewis
,
G.
,
Smooke
,
M. D.
,
Warnatz
,
J.
,
Evans
,
G. H.
,
Larson
,
R. S.
,
Mitchell
,
R. E.
,
Petzold
,
L. R.
,
Reynolds
,
W. C.
,
Caracotsios
,
M.
,
Stewart
,
W. E.
,
Glarborg
,
P.
,
Wang
,
C.
, and
Adigun
,
O.
, 2000, CHEMKIN Collection, Release 3.6, Reaction Design, Inc., San Diego, CA.
You do not currently have access to this content.