The concept of the cyclic periodical mixing combustion process (Kalb, and Sattelmayer, 2004, “Lean Blowout Limit and NOx-Production of a Premixed Sub-ppm-NOx Burner With Periodic Flue Gas Recirculation,” Proceedings of the ASME Turbo Expo 2004, Paper No. GT2004-53410; Kalb, and Sattelmayer, 2006, “Lean Blowout Limit and NOx-Production of a Premixed Sub-ppm-NOx Burner With Periodic Recirculation of Combustion Products,” ASME J. Eng. Gas Turbines Power, 128(2), pp. 247–254) for the extension of the lean blowout limit had been implemented in an atmospheric experimental combustor for testing with both external perfect (Brückner-Kalb, Hirsch, and Sattelmayer, 2006, “Operation Characteristics of a Premixed Sub-ppm NOx Burner With Periodical Recirculation of Combustion Products,” Proceedings of the ASME Turbo Expo 2006, Paper No. GT2006-90072) and technical (Brückner-Kalb, Napravnik, Hirsch, and Sattelmayer, 2007, “Development of a Fuel-Air Premixer for a Sub-ppm NOx Burner,” Proceedings of the ASME Turbo Expo 2007, Paper No. GT2007-27779) premixing of reactants. It had been tested with natural gas and has now been tested with a mixture of 70%vol of hydrogen and 30%vol of natural gas (98% CH4) as fuel. With natural gas the NOx emissions are unaffected by the limited technical premixing quality, as long as the air preheat is in the design range of the premixers (Brückner-Kalb, Napravnik, Hirsch, and Sattelmayer, 2007, “Development of a Fuel-Air Premixer for a Sub-ppm NOx Burner,” Proceedings of the ASME Turbo Expo 2007, Paper No. GT2007-27779). Then, for adiabatic flame temperatures of up to 1630 K NOx emissions are below 1 ppm(v) with CO emissions below 8 ppm(v) in the whole operation range of the test combustor (15% O2, dry). With the “70%volH230%volCH4” mixture the NOx emissions increase by nearly one order of magnitude. Then, NOx emissions below 7 ppm(v) (15% O2, dry) are achieved for adiabatic flame temperatures of up to 1600 K. They approach the 1 ppm(v) level only for flame temperatures below 1450 K. CO emissions are below 4 ppm(v). The reason for the increase in the NOx emissions is the higher reactivity of the mixture, which leads to earlier ignition in zones of still elevated unmixedness of reactants near the premixer-injector exits. This effect was investigated by chemical reactor network simulations analyzing a pressure effect and an additional chemical effect of hydrogen combustion on NOx formation.

1.
Milani
,
A.
, and
Saponaro
,
A.
, 2001, “
Diluted Combustion Technologies
,”
The IFRF Electronic Combustion Journal
, February, p.
200101
.
2.
Cavaliere
,
A.
, and
de Joannon
,
M.
, 2004, “
Mild Combustion
,”
Prog. Energy Combust. Sci.
0360-1285,
30
, pp.
329
366
.
3.
de Joannon
,
M.
,
Matarazzo
,
A.
,
Sabia
,
P.
, and
Cavaliere
,
A.
, 2006, “
Mild Combustion in Homogeneous Charge Diffusion Ignition (HCDI) Regime
,”
31st Symposium (International) on Combustion
, Combustion Institute.
4.
Milani
,
A.
, and
Wünning
,
J.
, 2002, “
What is Flameless Combustion?
,” IFRF Online Combustion Handbook, Combustion File No. 171.
5.
Wünning
,
J. A.
, and
Wünning
,
J. G.
, 1997, “
Flameless Oxidation to Reduce Thermal NO-Formation
,”
Prog. Energy Combust. Sci.
0360-1285,
23
, pp.
81
94
.
6.
Kalb
,
J. R.
, and
Sattelmayer
,
T.
, 2006, “
Lean Blowout Limit and NOx-Production of a Premixed Sub-ppm-NOx Burner With Periodic Recirculation of Combustion Products
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
(
2
), pp.
247
254
.
7.
Tsuji
,
H.
,
Gupta
,
A. K.
,
Hasegawa
,
T.
,
Katsuki
,
M.
,
Kishimoto
,
K.
, and
Morita
,
M.
, 2002,
High Temperature Air Combustion. From Energy Conservation to Pollution Reduction
,
CRC
,
Boca Raton, FL
.
8.
Gupta
,
A. K.
, 2000, “
Flame Characteristics and Challenges With High Temperature Air Combustion
,”
Proceedings of the International Joint Power Generation Conference
, Paper No. IJPGC2000-15087.
9.
Brückner-Kalb
,
J. R.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
, 2006, “
Operation Characteristics of a Premixed Sub-ppm NOx Burner With Periodical Recirculation of Combustion Products
,” ASME Paper No. GT2006-90072.
10.
Brückner-Kalb
,
J. R.
,
Napravnik
,
C.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
, 2007, “
Development of a Fuel-Air Premixer for a Sub-ppm NOx Burner
,” ASME Paper No. GT2007-27779.
11.
ECO PHYSICS AG
, 1997, User’s Manual for CLD 700 EL ht., Munich, Germany.
12.
Gärtner
,
F. J.
, 1982, “
Vergleich der Bildung von Stickstoffoxid in Methanol-Luft-und Kohlenwasserstoff-Luft-Flammen
,” Ph.D. thesis, Technische Hochschule Darmstadt, Darmstadt.
13.
Lutz
,
A. E.
,
Kee
,
R. J.
, and
Miller
,
J. A.
, 1998, “
Equil: A CHEMKIN Implementation of STANJAN for Computing Chemical Equilibria
,” Sandia National Laboratories, Sandia Technical Report No.
14.
Kee
,
R. J.
,
Miller
,
J. A.
, and
Jefferson
,
T. H.
, 1989, “
CHEMKIN: A General Purpose, Problem-Independent, Transportable, Fortran Chemical Kinetics Code Package
,” Sandia National Laboratories, Sandia Technical Report No. SAND80-8003 UC-4.
15.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, 1999, “
GRI-MECH 3.0
,” http://www.me.berkeley.edu/gri_mech/http://www.me.berkeley.edu/gri_mech/.
16.
Leonard
,
G.
, and
Stegmaier
,
J.
, 1994, “
Development of an Aeroderivative Gas Turbine Dry Low Emissions Combustion System
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
116
, pp.
542
546
.
17.
Steele
,
R. C.
,
Tonouchi
,
J. H.
,
Nicol
,
D. G.
,
Horning
,
D. C.
,
Malte
,
P. C.
, and
Pratt
,
D. T.
, 1998, “
Characterization of NOx, N2O, and CO for Lean-Premixed Combustion in a High-Pressure Jet-Stirred Reactor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
120
, pp.
303
310
.
18.
Brückner-Kalb
,
J. R.
, 2007, “
Sub-ppm-NOx-Verbrennungsverfahren für Gasturbinen
,” Ph.D. thesis, Lehrstuhl für Thermodynamik, Technische Universität München, Garching.
19.
Warnatz
,
J.
,
Maas
,
U.
, and
Dibble
,
R. W.
, 2001,
Combustion. Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation
,
3rd ed.
,
Springer Verlag
,
Berlin
.
20.
Naha
,
S.
,
Briones
,
A. M.
, and
Aggarwal
,
S. K.
, 2005, “
Effects of Fuel Blends on Pollutant Emissions in Flames
,”
Combust. Sci. Technol.
0010-2202,
177
, pp.
183
220
.
21.
Derudi
,
M.
,
Villani
,
A.
, and
Rota
,
R.
, 2007, “
Sustainability of Mild Combustion of Hydrogen-Containing Hybrid Fuels
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
3393
3400
.
22.
Therkelsen
,
P.
,
Mauzey
,
J.
,
McDonell
,
V.
, and
Samuelsen
,
S.
, 2006, “
Evaluation of a Low Emission Gas Turbine Operated on Hydrogen
,” ASME Paper No. GT2006-90725.
23.
Sabia
,
P.
,
Fierro
,
S.
,
Cavaliere
,
A.
,
de Joannon
,
M.
, and
Tregrossi
,
A.
, 2005, “
Hydrogen Addition Effect on Instabilities of Methane Mild Combustion in a Well-Stirred Flow Reactor
,”
28th Combustion Meeting: Combustion and Urban Areas
, Combustion Institute.
24.
Griebel
,
P.
,
Boschek
,
E.
, and
Jansohn
,
P.
, 2006, “
Flame Stability and NOx Emission Improvements Due to H2 Enrichment of Turbulent, Lean Premixed, High-Pressure, Methane/Air Flames
,”
The Future of Gas Turbine Technology-Third International Conference
, Paper No. ID S4 T2/1.
25.
Boschek
,
E.
,
Griebel
,
P.
, and
Jansohn
,
P.
, 2007, “
Fuel Variability Effects on Turbulent, Lean Premixed Flames at High Pressures
,” ASME Paper No. GT2007-27496.
26.
Tomczak
,
H. -J.
,
Benelli
,
G.
,
Carrai
,
L.
, and
Cecchini
,
D.
, 2002, “
Investigation of a Gas Turbine Combustion System Fired With Mixtures of Natural Gas and Hydrogen
,”
The IFRF Electronic Combustion Journal
, Article No. 200207.
27.
Lückerath
,
R.
,
Meier
,
W.
, and
Aigner
,
M.
, 2007, “
FLOX Combustion at High Pressure With Different Fuel Compositions
,” ASME Paper No. GT2007-27337.
28.
Burmberger
,
S.
, 2004, “
Einfluss der Brennstoffzusammensetzung auf die reaktionskinetischen Parameter von Vormischflammen
,” Diploma thesis, Lehrstuhl für Thermodynamik, TUM, Munich.
29.
Kalb
,
J. R.
, and
Sattelmayer
,
T.
, 2004, “
Lean Blowout Limit and NOx-Production of a Premixed Sub-ppm-NOx Burner With Periodic Flue Gas Recirculation
,” ASME Paper No. GT2004-53410.
30.
Glarborg
,
P.
,
Kee
,
R. J.
,
Grcar
,
J. F.
, and
Miller
,
J. A.
, 1988, “
PSR: A Fortran Program for Modeling Well-Stirred Reactors
,” Sandia National Laboratories, Sandia Technical Report No. SAND86-8209 UC-4.
31.
Lutz
,
A. E.
,
Kee
,
R. J.
, and
Miller
,
J. A.
, 1988, “
Senkin: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics With Sensitivity Analysis
,” Sandia National Laboratories, Sandia Technical Report No. SAND87-8248.
32.
Sattelmayer
,
T.
,
Polifke
,
W.
,
Winkler
,
D.
, and
Doebbeling
,
K.
, 1998, “
NOx-Abatement Potential of Lean-Premixed GT Combustors
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
120
, pp.
48
58
.
33.
Phi
,
V. M.
,
Mauzey
,
J. L.
,
McDonell
,
V. G.
, and
Samuelsen
,
G. S.
, 2004, “
Fuel Injection and Emissions Characteristics of a Commercial Microturbine Generator
,” ASME Paper No. GT2004-54039.
34.
Sabia
,
P.
,
Schiesswohl
,
E.
,
de Joannon
,
M. R.
, and
Cavaliere
,
A.
, 2006, “
Numerical Analysis of Hydrogen Mild Combustion
,”
Turk. J. Eng. Environ. Sci.
1300-0160,
30
, pp.
127
134
.
You do not currently have access to this content.