The vibratory response amplitude of a blade under forced response conditions depends primarily on the aerodynamic excitation amplitude, on damping, and on the effects of mistuning. The work presented here targets to identify the individual contribution of these parameters to the resultant response amplitude depending on the mass flow and the resonance case. For this purpose, measurements were performed of the excitation amplitude, damping, and response amplitude for a high-speed centrifugal compressor. The inlet flow field was intentionally distorted in order to target specific excitation cases of the first main blade mode. For the compressor used, it was found that the overall damping of the first mode could be considered to be constant for any resonance case and mass flow. For this reason, case-to-case variations in the blade-averaged response amplitude were found to depend solely on the aerodynamic excitation amplitude due to inlet flow distortion. Based on an examination of the aerodynamic work distribution during resonance, zones of either excitation or damping work on the blade surface could be successfully identified. This enabled the conclusion to be drawn that energy transfer is a very localized phenomenon and may significantly change as the mass flow is altered, thereby introducing a redistribution of the blade excitation function. The effect of mistuning was shown to alter aerodynamic damping and response amplitude. However, the variation in aerodynamic damping of individual blades was relatively low, thus suggesting that blade-to-blade variation in response amplitude is primarily driven by energy localization in the sense typically experienced with coupled and mistuned structures.

1.
Haupt
,
U.
, 1984, “
Untersuchung des Schaufelschwingungsverhaltens hochbelasteter Radialverdichterlaufräder
,”
Fortschrittsberichte der VDI Zeitschriften
, Vol.
7
,
VDI-Verlag
,
Düsseldorf, Hannover
.
2.
Jin
,
D.
, 1990, “
Untersuchung von Schaufelschwingungen und ihrer Erregungsursachen an Radialverdichtern
,” Ph.D. thesis, Hannover University, Hannover.
3.
Sälzle
,
K. P.
, 2001, “
Schwingungsverhalten der Laufrdder von Radialventilatoren
,” Ph.D. thesis, Universität Stuttgart, Stuttgart.
4.
Manwaring
,
S. R.
, and
Fleeter
,
S.
, 1990, “
Inlet Distortion Generated Periodic Aerodynamic Rotor Response
,”
ASME J. Turbomach.
0889-504X,
112
(
2
), pp.
298
307
.
5.
Manwaring
,
S. R.
, and
Fleeter
,
S.
, 1991, “
Forcing Function Effects on Rotor Periodic Aerodynamic Response
,”
ASME J. Turbomach.
0889-504X,
113
(
2
), pp.
312
319
.
6.
Srinivasan
,
A. V.
,
Cutts
,
D. G.
, and
Sridhar
,
S.
, 1981, “
Turbojet Engine Blade Damping
,”
NASA
Technical Report No. NASA-CR-165406.
7.
Newman
,
F. A.
, 1988, “
Experimental Determination of Aerodynamic Damping in a Three-Stage Transonic Axial-Flow Turbine
,”
NASA
Technical Report No. NASA-TM-100953.
8.
Crawley
,
E. F.
, 1983, “
Aerodynamic Damping Measurements in a Transonic Compressor
,”
ASME J. Eng. Power
0022-0825,
105
, pp.
575
584
.
9.
Kielb
,
J. J.
, and
Abhari
,
R. S.
, 2003, “
Experimental Study of Aerodynamic and Structural Damping in a Full-Scale Rotating Turbine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
(
1
), pp.
102
112
.
10.
Srinivasan
,
A. V.
, 1984, “
Vibrations of Bladed-Disk Assemblies—A Selected Survey
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
106
, pp.
165
168
.
11.
Srinivasan
,
A. V.
, 1997, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
741
775
.
12.
Kammerer
,
A.
, and
Abhari
,
R. S.
, 2009, “
Experimental Study on Impeller Blade Vibration During Resonance—Part I: Blade Vibration Due to Inlet Flow Distortion
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
131
(
2
), p.
022508
.
13.
Kammerer
,
A.
, and
Abhari
,
R. S.
, 2009, “
Experimental Study on Impeller Blade Vibration During Resonance—Part II: Blade Damping
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
131
(
2
), p.
022509
.
14.
Kammerer
,
A.
, and
Abhari
,
R. S.
, 2009, “
Blade Forcing Function and Aerodynamic Work Measurements in a High Speed Centrifugal Compressor With Inlet Distortion
,” ASME Paper No. GT2009-59911.
15.
Schleer
,
M.
,
Mokulys
,
T.
, and
Abhari
,
R. S.
, 2003, “
Design of a High Pressure-Ratio Centrifugal Compressor for Studying Reynolds Number Effects
,”
International Conference on Compressors and their Systems
, IMechE, London.
16.
Schleer
,
M.
, 2006,
Flow Structure and Stability of a Turbocharger Centrifugal Compressor
, Dissertation ETH No. 16605, VDI-Verlag, Düsseldorf.
17.
Craig
,
R. R.
, and
Kurdila
,
A. J.
, 2006,
Fundamentals of Structural Dynamics
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
18.
Jin
,
D.
,
Hasemann
,
H.
,
Haupt
,
U.
, and
Rautenberg
,
M.
, 1991, “
Untersuchung der Schaufeldämpfung hochbelasteter Radialverdichterlaufräder
,”
Schwingungen in rotierenden Maschinen: Referate der Tagung an der Universität/Gesamthochschule Kassel
, Vieweg, Verlag, Braunschweig.
You do not currently have access to this content.