The paper considers three issues in flexible rotor and magnetic bearing systems, namely, the control of rotor vibration, control of transmitted forces, and prevention of rotor contact with auxiliary bearings. An adaptive multiobjective optimization method is developed to tackle these issues simultaneously using a modified recursive adaptive controller. The proposed method involves automatic tuning of the weighting parameters in accordance with performance specifications. A two-stage weighting strategy is implemented, involving base weightings, calculated from a singular value decomposition of the system’s receptance matrices, and two adjustable weighting parameters to shift the balance between the three objective functions. The receptance matrices are functions of rotational speed and they are estimated in situ. The whole process does not require prior knowledge of the system parameters. Real-time implementation of the proposed controller is explained and tested by using an experimental flexible rotor magnetic bearing system. The rotor displacements were measured relative to the base frame using four pairs of eddy current displacement transducers. System stability is ensured through local PID controllers. The proposed adaptive controller is implemented in parallel, and the effectiveness of the weighting parameters in changing the balance between the transmitted forces and rotor vibrations is demonstrated experimentally.

1.
Kasarda
,
M. E. F.
, 2000, “
An Overview of Active Magnetic Bearing Technology and Applications
,”
Shock Vib. Dig.
0583-1024,
32
(
2
), pp.
91
99
.
2.
Vance
,
J. M.
,
Ying
,
D.
, and
Nikolajsen
,
J. L.
, 2000, “
Actively Controlled Bearing Dampers for Aircraft Engine Applications
,”
J. Eng. Gas Turbines Power
0742-4795,
122
(
3
), pp.
466
472
.
3.
Schweitzer
,
G.
, 2005, “
Safety and Reliability Aspects for Active Magnetic Bearing Applications—A Survey
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
219
(
I6
), pp.
383
392
.
4.
Seo
,
C. J.
, and
Kim
,
B. K.
, 1996, “
Robust and Reliable H Infinity Control for Linear Systems With Parameter Uncertainty and Actuator Failure
,”
Automatica
0005-1098,
32
(
3
), pp.
465
467
.
5.
Sahinkaya
,
M. N.
,
Cole
,
M. O. T.
, and
Burrows
,
C. R.
, 2001, “
Fault Detection and Tolerance in Synchronous Vibration Control of Rotor-Magnetic Bearing Systems
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
215
(
12
), pp.
1401
1416
.
6.
Cole
,
M. O. T.
,
Keogh
,
P. S.
,
Sahinkaya
,
M. N.
, and
Burrows
,
C. R.
, 2004, “
Towards Fault-Tolerant Active Control of Rotor-Magnetic Bearing Systems
,”
Control Eng. Pract.
0967-0661,
12
(
4
), pp.
491
501
.
7.
Nordmann
,
R.
,
Aenis
,
M.
,
Knopf
,
E.
, and
Strassburger
,
S.
, 2000, “
Active Magnetic Bearings—A Step Towards Smart Rotating Machinery
,”
Proceedings of the Seventh International Conference on Vibrations in Rotating Machinery
, pp.
3
19
.
8.
Lum
,
K. Y.
,
Coppola
,
V. T.
, and
Bernstein
,
D. S.
, 1998, “
Adaptive Virtual Autobalancing for a Rigid Rotor With Unknown Mass Imbalance Supported by Magnetic Bearings
,”
ASME J. Vibr. Acoust.
0739-3717,
120
(
2
), pp.
557
570
.
9.
Nonami
,
K.
,
Fan
,
Q. F.
, and
Ueyama
,
H.
, 1998, “
Unbalance Vibration Control of Magnetic Bearing Systems Using Adaptive Algorithm With Disturbance Frequency Estimation
,”
JSME Int. J., Ser. C
1340-8062,
41
(
2
), pp.
220
226
.
10.
Burrows
,
C. R.
,
Keogh
,
P. S.
, and
Tasaltin
,
R.
, 1993, “
Closed-Loop Vibration Control of Flexible Rotors—An Experimental-Study
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
207
(
C1
), pp.
1
17
.
11.
Keogh
,
P. S.
,
Mu
,
C.
, and
Burrows
,
C. R.
, 1995, “
Optimized Design of Vibration Controllers for Steady and Transient Excitation of Flexible Rotors
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
209
(
C3
), pp.
155
168
.
12.
Nonami
,
K.
, and
Ito
,
T.
, 1996, “
μ Synthesis of Flexible Rotor-Magnetic Bearing Systems
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
4
(
5
), pp.
503
512
.
13.
Burrows
,
C. R.
, and
Sahinkaya
,
M. N.
, 1983, “
Vibration Control of Multimode Rotor-Bearing Systems
,”
Proc. R. Soc. London
0370-1662,
386
(
1790
), pp.
77
94
.
14.
Burrows
,
C. R.
,
Sahinkaya
,
M. N.
, and
Clements
,
S.
, 1989, “
Active Vibration Control of Flexible Rotors: An Experimental and Theoretical Study
,”
Proc. R. Soc. London
0370-1662,
422
(
1862
), pp.
123
146
.
15.
Larsonneur
,
R.
,
Siegwart
,
R.
, and
Traxler
,
A.
, 1992, “
Active Magnetic Bearing Control Strategies for Solving Vibration Problems in Industrial Rotor Systems
,”
Proceedings of the International Conference on Vibrations in Rotating Machinery
, pp.
83
90
.
16.
Yu
,
Z.
,
Meng
,
L. T.
, and
King
,
L. M.
, 1998, “
Electromagnetic Bearing Actuator for Active Vibration Control of a Flexible Rotor
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
212
(
8
), pp.
705
716
.
17.
Knospe
,
C. R.
,
Hope
,
R. W.
,
Fedigan
,
S. J.
, and
Williams
,
R. D.
, 1995, “
Experiments in the Control of Unbalance Response Using Magnetic Bearings
,”
Mechatronics
0957-4158,
5
(
4
), pp.
385
400
.
18.
Elliott
,
S. J.
,
Stothers
,
I. M.
, and
Nelson
,
P. A.
, 1987, “
A Multiple Error LMS Algorithm and Its Application to the Active Control of Sound and Vibration
,”
IEEE Trans. Acoust. Speech, Signal Process.
,
35
(
10
), pp.
1423
1434
.
19.
Baun
,
D. O.
,
Maslen
,
E. H.
,
Knospe
,
C. R.
, and
Flack
,
R. D.
, 2002, “
A Multiple Harmonic Open-Loop Controller for Hydro/Aerodynamic Force Measurements in Rotating Machinery Using Magnetic Bearings
,”
J. Eng. Gas Turbines Power
0742-4795,
124
(
4
), pp.
827
834
.
20.
Abulrub
,
A. G.
,
Sahinkaya
,
M. N.
,
Keogh
,
P. S.
, and
Burrows
,
C. R.
, 2006, “
Adaptive Control of Active Magnetic Bearings to Prevent Rotor-Bearing Contact
,”
Proceedings of the 2006 ASME International Mechanical Engineering Congress and Exposition (IMECE2006)
, Chicago, IL.
21.
Shi
,
J.
,
Zmood
,
R.
, and
Qin
,
L.
, 2002, “
The Indirect Adaptive Feed-Forward Control in Magnetic Bearing Systems for Minimizing Selected Vibration Performance Measures
,”
Proceedings of the Eight International Symposium on Magnetic Bearings (ISMB-8)
, Mito, Japan.
22.
Keogh
,
P. S.
,
Sahinkaya
,
M. N.
,
Burrows
,
C. R.
, and
Prabhakar
,
S.
, 2006, “
Wavelet Based Adaptation of H-Infinity Control in Flexible Rotor/Magnetic Bearing System
,”
Proceedings of the IFTOMM Seventh International Conference on Rotor Dynamics
, Vienna, Austria.
23.
Abulrub
,
A. G.
,
Sahinkaya
,
M. N.
,
Keogh
,
P. S.
, and
Burrows
,
C. R.
, 2006, “
Contact Dynamics and Recursive Open Loop Adaptive Control to Recover Rotor Position
,”
Proceedings of the Tenth International Symposium on Magnetic Bearings (ISMB10)
, Martigny, Switzerland.
24.
Bryson
,
A. E.
, and
Ho
,
Y. C.
, 1975,
Applied Optimal Control: Optimization, Estimation, and Control
,
Hemisphere
,
Washington, DC
.
25.
Sahinkaya
,
M. N.
,
Abulrub
,
A. G.
, and
Burrows
,
C. R.
, 2008, “
An Adaptive Multi-Objective Controller for Flexible Rotor and Magnetic Bearing Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434, submitted.
You do not currently have access to this content.