In this contribution, an overview of the progress in the design of an enhanced FLOX® burner is given. A fuel flexible burner concept was developed to fulfill the requirements of modern gas turbines: high specific power density, high turbine inlet temperature, and low NOx emissions. The basis for the research work is numerical simulation. With the focus on pollutant emissions, a detailed chemical kinetic mechanism is used in the calculations. A novel mixing control concept, called HiPerMix®, and its application in the FLOX® burner are presented. In view of the desired operational conditions in a gas turbine combustor, this enhanced FLOX® burner was manufactured and experimentally investigated at the DLR test facility. In the present work, experimental and computational results are presented for natural gas and natural gas+hydrogen combustion at gas turbine relevant conditions and high adiabatic flame temperatures (up to Tad=2000K). The respective power densities are PA=13.3MW/m2bar (natural gas (NG)) and PA=14.8MW/m2bar(NG+H2), satisfying the demands of a gas turbine combustor. It is demonstrated that the combustion is complete and stable and that the pollutant emissions are very low.

1.
Krebs
,
W.
,
Hellat
,
J.
, and
Eroglu
,
A.
, 2003, “
Technische Verbrennungssysteme
,”
Stationäre Gasturbinen
,
C.
Lechner
and
J.
Seume
, eds.,
Springer–Verlag
,
New York
.
2.
Correa
,
S. M.
, 1993, “
A Review of NOx Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Technol.
0010-2202,
87
, pp.
329
362
.
3.
Lefebvre
,
A. H.
, 1999,
Gas Turbine Combustion
,
Taylor & Francis
,
Philadelphia
.
4.
Dowling
,
A. P.
, and
Hubbard
,
S.
, 2000, “
Instability in Lean Premixed Combustors
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
214
, pp.
317
332
.
5.
Candel
,
S.
, 2002, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
1
28
.
6.
Kröner
,
M.
,
Fritz
,
J.
, and
Sattelmayer
,
T.
, 2002, “
Flashback Limits for Combustion Induced Vortex Breakdown in a Swirl Burner
,” ASME Paper No. GT2002-30075.
7.
Lieuwen
,
T.
, 2003, “
Combustion Driven Oscillations in Gas Turbines
,”
Turbomachinery International
0149-4147,
44
, pp.
16
19
.
8.
FLOX® is a registered trademark of WS Wärmeprozesstechnik GmbH, Renningen, Germany.
9.
Wünning
,
J. A.
, and
Wünning
,
J. G.
, 1992, “
Burners for Flameless Oxidation With Low NOx Formation Even at Maximum Air Preheat
,”
Gaswärme International
0020-9384,
41
(
10
), pp.
438
444
.
10.
Wünning
,
J. A.
, and
Wünning
,
J. G.
, 1997, “
Flameless Oxidation to Reduce Thermal NO-Formation
,”
Prog. Energy Combust. Sci.
0360-1285,
23
, pp.
81
94
.
11.
Cavaliere
,
A.
, and
Joannon
,
M.
, 2004, “
Mild Combustion
,”
Prog. Energy Combust. Sci.
0360-1285,
30
, pp.
329
366
.
12.
Bobba
,
M. K.
,
Gopalakrishnan
,
P.
,
Seitzman
,
J. M.
, and
Zinn
,
B. T.
, 2006, “
Characteristics of Combustion Processes in a Stagnation Point Reverse Flow Combustor
,” ASME Paper No. GT2006-91217.
13.
Lückerath
,
R.
,
Meier
,
W.
, and
Aigner
,
M.
, 2008, “
FLOX® Combustion at High Pressure With Different Fuel Compositions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
(
1
), p.
011505
.
14.
Schütz
,
H.
,
Lückerath
,
R.
,
Noll
,
B.
, and
Aigner
,
M.
, 2007, “
Complex Chemistry Simulation of FLOX®: Flameless Oxidation Combustion
,”
Clean Air, International Journal of Energy for a Clean Environment
1561-4417,
8
(
3
), pp.
239
257
.
15.
Schütz
,
H.
,
Lückerath
,
R.
,
Kretschmer
,
T.
,
Noll
,
B.
, and
Aigner
,
M.
, 2008, “
Analysis of the Pollutant Formation in the FLOX® Combustion
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
(
1
), p.
011503
.
16.
HiPerMix® is a registered trademark of the DLR (Deutsches Zentrum für Luft-und Raumfahrt e.V.), Köln.
17.
Hirt
,
C. W.
,
Amsden
,
A. A.
, and
Cook
,
J. L.
, 1974, “
An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds
,”
J. Comput. Phys.
0021-9991,
14
, pp.
227
253
.
18.
Pracht
,
W. E.
, 1975, “
Calculating Three-Dimensional Fluid Flows at All Speeds With an Eulerian-Lagrangian Computing Mesh
,”
J. Comput. Phys.
0021-9991,
17
, pp.
132
159
.
19.
Amsden
,
A. A.
,
O’Rourke
,
P. J.
, and
Butler
,
T. D.
, 1989, “
KIVA-II: A Computer Program for Chemically Reactive Flows With Sprays
,” Report No. LA-11560-MS.
20.
Speziale
,
C. G.
, 1998, “
Turbulence Modeling for Time-Dependent RANS and VLES: A Review
,”
AIAA J.
0001-1452,
36
, pp.
173
184
.
21.
Nordin
,
P. A. N.
, 1995, “
Complex Chemistry Modelling of Diesel Sprays
,” Ph.D. thesis, Chalmers University of Technology, Göteborg.
22.
Byggstøyl
,
S.
, and
Magnussen
,
B. F.
, 1985, “
A Model for Flame Extinction in Turbulent Flow
,”
Fourth Symposium on Turbulent Shear Flows
, pp.
381
395
.
23.
Schütz
,
H.
, and
Schmitz
,
G.
, 2009, European Patent No. PCT/EP08/59744 and German Patent No. DE 10 2007 036 953 B3 2009.04.02.
24.
Fleck
,
J.
,
Griebel
,
P.
,
Steinberg
,
A.
,
Stöhr
,
M.
, and
Aigner
,
M.
, 2010, “
Experimental Investigation of a Generic, Fuel Flexible Reheat Combustor at Gas Turbine Relevant Operating Conditions
,” ASME Paper No. GT2010-22722.
25.
Hall
,
J. M.
, and
Petersen
,
E. L.
, 2006, “
An Optimized Kinetics Model for OH Chemiluminescence at High Temperatures and Atmospheric Pressures
,”
Int. J. Chem. Kinet.
0538-8066,
38
, pp.
714
724
.
26.
Lee
,
J. G.
, and
Santavicca
,
D. A.
, 2003, “
Experimental Diagnostics for the Study of Combustion Instabilities in Lean Premixed Combustors
,”
J. Propul. Power
0748-4658,
19
, pp.
735
750
.
27.
LaVision GmbH
, 2005, DaVis Flowmaster Manual.
28.
Meinhart
,
C.
,
Wereley
,
S.
, and
Santiago
,
J.
, 2000, “
A PIV Algorithm for Estimating Time-Averaged Velocity Fields
,”
ASME J. Fluids Eng.
0098-2202,
122
, pp.
285
289
.
29.
Eckbreth
,
A. C.
, 1995,
Laser Diagnostics for Combustion Temperature and Species
,
2nd ed.
,
Gordon and Breach
,
Amsterdam
.
30.
Stricker
,
W.
, 2002,
Measurement of Temperature in Laboratory Flames and Practical Devices
,
2nd ed.
,
Taylor & Francis
,
New York
.
31.
Lückerath
,
R.
,
Woyde
,
M.
,
Meier
,
W.
,
Stricker
,
W.
,
Schnell
,
U.
,
Magel
,
H. C.
,
Görres
,
J.
,
Spliethoff
,
H.
, and
Maier
,
H.
, 1995, “
Comparison of Coherent Anti-Stokes Raman-Scattering Thermometry With Thermocouple Measurements and Model Predictions in Both Natural-Gas and Coal-Dust Flames
,”
Appl. Opt.
0003-6935,
34
, pp.
3303
3312
.
32.
Meier
,
W.
,
Plath
,
I.
, and
Stricker
,
W.
, 1991, “
The Application of Single-Pulse CARS for Temperature Measurements in a Turbulent Stagnation Flame
,”
Appl. Phys. B: Photophys. Laser Chem.
0721-7269,
53
, pp.
339
346
.
33.
Boquillon
,
J. P.
,
Péalat
,
M.
,
Bouchardy
,
P.
,
Gollin
,
G.
,
Magre
,
P.
, and
Taran
,
J. P.
, 1988, “
Spatial Averaging and Multiplex Coherent Anti-Stokes Raman Scattering Temperature-Measurement Error
,”
Opt. Lett.
0146-9592,
13
, pp.
722
724
.
34.
Thumann
,
A.
,
Seeger
,
T.
, and
Leipertz
,
A.
, 1995, “
Evaluation of Two Different Gas Temperatures and Their Volumetric Fraction From Broadband N2 Coherent Anti-Stokes Raman Spectroscopy Spectra
,”
Appl. Opt.
0003-6935,
34
, pp.
3313
3317
.
35.
Leonard
,
G.
, and
Stegmaier
,
J.
, 1993, “
Development of an Aeroderivative Gas Turbine Dry Low Emission Combustion System
,” ASME Paper No. 93-GT-288.
You do not currently have access to this content.