Swirling flows are widely used in industrial burners and gas turbine combustors for flame stabilization. Several prior studies have shown that these flames exhibit complex dynamics under near blowoff conditions, associated with local flamelet extinction and alteration in the vortex breakdown flow structure. These extinction events are apparently due to the local strain rate irregularly oscillating above and below the extinction strain rate values near the attachment point. In this work, global temporally resolved and detailed spatial measurements were obtained of hydrogen/methane flames. Supporting calculations of extinction strain rates were also performed using detailed kinetics. It is shown that flames become unsteady (or local extinctions happen) at a nearly constant extinction strain rate for different hydrogen/methane mixtures. Based upon analysis of these results, it is suggested that classic Damköhler number correlations of blowoff are, in fact, correlations for the onset of local extinction events, not blowoff itself. Corresponding Mie scattering imaging of near blowoff flames also was used to characterize the spatio-temporal dynamics of holes along the flame that are associated with local extinction.

1.
Lieuwen
,
T.
,
McDonell
,
V.
,
Santavicca
,
D.
, and
Sattelmayer
,
T.
, 2008, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
, p.
011506
.
2.
Richards
,
G. A.
,
McMillian
,
M. M.
,
Gemmen
,
R. S.
, and
Cully
,
S. R.
, 2001, “
Issues for Low Emission, Fuel Flexible Power Systems
,”
Prog. Energy Combust. Sci.
0360-1285,
27
, pp.
141
169
.
3.
Hoffmann
,
S.
,
Habisreuther
,
P.
, and
Lenze
,
B.
, 1994, “
Development and Assessment of Correlations for Predicting Stability Limits of Swirling Flames
,”
Chem. Eng. Process.
0255-2701,
33
, pp.
393
400
.
4.
Glassman
,
I.
, 1996,
Combustion
,
3rd ed.
,
Academic
,
San Diego, CA
.
5.
Plee
,
S. L.
, and
Mellor
,
A. M.
, 1979, “
Characteristic Time Correlation for Lean Blow off of Bluff-Body Stabilized Flames
,”
Combust. Flame
0010-2180,
35
, pp.
61
80
.
6.
Strakey
,
P.
,
Sidwell
,
T.
, and
Ontko
,
J.
, 2006, “
Investigation of the Effects of Hydrogen Addition on Lean Extinction in a Swirl Stabilized Combustor
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
3173
3180
.
7.
Zukoski
,
E. E.
, and
Marble
,
F. E.
, 1956, “
Experiments Concerning the Mechanism of Flame Blowoff From Bluff Bodies
,”
Proceedings of the Gas Dynamics Symposium on Aerothermochemistry
, pp.
205
210
.
8.
Spalding
,
D. B.
, 1953, “
Theoretical Aspects of Flame Stabilization
,”
Aircr. Eng.
0002-2667,
25
, pp.
264
276
.
9.
Longwell
,
J. P.
, 1952, “
Flame Stabilization by Bluff Bodies and Turbulent Flames in Ducts
,”
Proc. Combust. Inst.
1540-7489,
4
, pp.
90
97
.
10.
Longwell
,
J. P.
,
Chenevey
,
J. E.
,
Clark
,
W. W.
, and
Frost
,
E. E.
, 1948, “
Flame Stabilization by Baffles in a High Velocity Gas Stream
,”
Proc. Combust. Inst.
1540-7489,
3
, pp.
40
44
.
11.
Bovina
,
T. A.
, 1959, “
Studies of Exchange Between Re-Circulation Zone Behind the Flame-Holder and Outer Flow
,”
Proc. Combust. Inst.
1540-7489,
7
, pp.
692
696
.
12.
Kundu
,
K. M.
,
Banerjee
,
D.
, and
Bhaduri
,
D.
, 1980, “
On Flame Stabilization by Bluff-Bodies
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
209
214
.
13.
Kundu
,
K. M.
,
Banerjee
,
D.
, and
Bhaduri
,
D.
, 1977, “
Theoretical Analysis on Flame Stabilization by a Bluff-Body
,”
Combust. Sci. Technol.
0010-2202,
17
, pp.
153
162
.
14.
Williams
,
G. C.
,
Hottel
,
H. C.
, and
Scurlock
,
A. C.
, 1951, “
Flame Stabilization and Propagation in High Velocity Gas Streams
,”
Proc. Combust. Inst.
1540-7489,
3
, pp.
21
40
.
15.
Williams
,
F. A.
, 1966, “
Flame Stabilization of Premixed Turbulent Gases
,”
Applied Mechanics Surveys
,
Spartan Books
,
Washington
, pp.
1157
1170
.
16.
Zukoski
,
E. E.
, 1954, “
Flame Stabilization on Bluff Bodies at Low and Intermediate Reynolds Numbers
,” Ph.D. thesis, California Institute of Technology, Pasadena.
17.
Zukoski
,
E. E.
, 1997,
Afterburners
,
G.
Oates
, ed.,
Afterburners
, AIAA,
Reston, VA
.
18.
Zukoski
,
E. E.
, and
Marble
,
F. E.
, 1955, “
The Role of Wake Transition in the Process of Flame Stabilization on Bluff Bodies
,”
AGARD Combustion Researches and Reviews
,
Butterworth Scientific Publishers
,
London
, pp.
167
180
.
19.
Pan
,
J. C.
, and
Ballal
,
D. R.
, 1992, “
Chemistry and Turbulence Effects in Bluff Body Stabilized Flames
,”
30th Aerospace Sciences Meeting and Exhibit
.
20.
Yamaguchi
,
S.
,
Ohiwa
,
N.
, and
Hasegawa
,
T.
, 1985, “
Structure and Blow-Off Mechanism of Rod-Stabilized Premixed Flame
,”
Combust. Flame
0010-2180,
62
, pp.
31
41
.
21.
Driscoll
,
J.
, 2008, “
Turbulent Premixed Combustion: Flamelet Structure and Its Effect on Turbulent Burning Velocities
,”
Prog. Energy Combust. Sci.
0360-1285,
34
, pp.
91
134
.
22.
Bellows
,
B.
, and
Lieuwen
,
T.
, 2007, “
Nonlinear Flame Transfer Function Characteristics in a Swirl Stabilized Combustor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
954
961
.
23.
Law
,
C. K.
, 2006,
Combustion Physics
,
Cambridge University Press
,
Cambridge, England
.
24.
Poinsot
,
T.
, and
Veynante
,
D.
, 2001,
Theoretical and Numerical Combustion
,
RT Edwards
,
Flourtown, PA
.
25.
Kobayashi
,
H.
, and
Kitano
,
M.
, 1989, “
Extinction Characteristics of a Stretched Cylindrical Premixed Flame
,”
Combust. Flame
0010-2180,
76
, pp.
285
296
.
26.
Wang
,
P.
,
Hu
,
S.
,
Wehrmeyer
,
J.
, and
Pitz
,
R.
, 2004, “
Stretch and Curvature Effects on Flames
,”
42nd AIAA Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 2004-148.
27.
Chung
,
S. H.
,
Chung
,
D. H.
,
Fu
,
C.
, and
Cho
,
P.
, 1996, “
Local Extinction Karlovitz Number for Premixed Flames
,”
Combust. Flame
0010-2180,
106
, pp.
515
520
.
28.
Shanbogue
,
S.
,
Hussain
,
S.
, and
Lieuwen
,
T.
, 2009, “
Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust. Sci.
0360-1285,
35
, pp.
98
120
.
29.
Muruganandam
,
T.
,
Nair
,
S.
,
Scarborough
,
D.
,
Neumeier
,
Y.
,
Jagoda
,
J.
,
Lieuwen
,
T.
,
Seitzman
,
J.
, and
Zinn
,
B. T.
, 2005, “
Active Control of Lean Blowout for Turbine Engine Combustors
,”
J. Propul. Power
0748-4658,
21
, pp.
807
814
.
30.
Hertzberg
,
J. R.
,
Shepherd
,
I. G.
, and
Talbot
,
L.
, 1991, “
Vortex Shedding Behind Rod Stabilized Flames
,”
Combust. Flame
0010-2180,
86
, pp.
1
11
.
31.
Yang
,
J. T.
,
Yen
,
C. W.
, and
Tsai
,
G. L.
, 1994, “
Flame Stabilization in the Wake Flow Behind a Slit V-Gutter
,”
Combust. Flame
0010-2180,
99
, pp.
288
294
.
32.
Kim
,
W.
,
Lienau
,
J.
,
van Slooten
,
P.
,
Colket
,
M.
,
Malecki
,
R.
, and
Syed
,
S.
, 2006, “
Towards Modeling Lean Blowout in Gas Turbine Flameholder Applications
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
, pp.
40
48
.
33.
Karlovitz
,
B.
,
Denniston
,
D. W.
,
Knapschaefer
,
D. H.
, and
Wells
,
F. E.
, 1953, “
Studies on Turbulent Flames
,”
Proc. Combust. Inst.
1540-7489,
4
, pp.
613
620
.
34.
Chen
,
J.
, and
Im
,
H.
, 2000, “
Stretch Effects on the Burning Velocity of Turbulent Premixed Hydrogen/Air Flames
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
211
218
.
35.
Kostiuk
,
L. W.
,
Bray
,
K. N. C.
, and
Cheng
,
R. K.
, 1993, “
Experimental Study of Premixed Turbulent Combustion in Opposed Streams. Part II—Reacting Flow Field and Extinction
,”
Combust. Flame
0010-2180,
92
, pp.
396
409
.
36.
Bradley
,
D.
,
Lauu
,
A. K. C.
, and
Lawes
,
M.
, 1992, “
Flame Stretch Rate as a Determinant of Turbulent Burning Velocity
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
338
, pp.
359
387
.
37.
Pantano
,
C.
, and
Pullin
,
D. I.
, 2003, “
On the Dynamics of the Collapse of a Diffusion-Flame Hole
,”
J. Fluid Mech.
0022-1120,
480
, pp.
311
332
.
38.
Buckmaster
,
J.
, 1996, “
Edge-Flames and Their Stability
,”
Combust. Sci. Technol.
0010-2202,
115
, pp.
41
68
.
39.
Nayagam
,
V.
,
Balasubramaniam
,
R.
, and
Ronney
,
P. D.
, 1999, “
Diffusion Flame-Holes
,”
Combust. Theory Modell.
1364-7830,
3
, pp.
727
742
.
40.
Brown
,
C. D.
,
Watson
,
K. A.
, and
Lyons
,
K. M.
, 1999, “
Studies on Lifted Jet Flames in Coflow: The Stabilization Mechanism in the Near-and Far-Fields
,”
Flow, Turbul. Combust.
1386-6184,
62
, pp.
249
273
.
41.
Liu
,
J. -B.
, and
Ronney
,
P. D.
, 1999, “
Premixed Edge Flames in Spatially Varying Straining Flows
,”
Combust. Sci. Technol.
0010-2202,
144
, pp.
21
45
.
42.
Buckmaster
,
J.
, 2002, “
Edge-Flames
,”
Prog. Energy Combust. Sci.
0360-1285,
28
, pp.
435
475
.
43.
Nair
,
S.
, and
Lieuwen
,
T.
, 2005, “
Acoustic Detection of Blowout in Premixed Flames
,”
J. Propul. Power
0748-4658,
21
, pp.
32
39
.
44.
Zhang
,
Q.
,
Noble
,
D.
,
Shanbogue
,
S.
, and
Lieuwen
,
T.
, 2007, “
Impacts of Hydrogen Addition on Near Lean Blowout Dynamics in a Swirling Combustor
,” ASME Paper No. 2007-27308.
45.
Williams
,
T. C.
,
Schefer
,
R. W.
,
Oefelein
,
J. C.
, and
Shaddix
,
C. R.
, 2007, “
Idealized Gas Turbine Combustor for Performance Research and Validation of Large Eddy Simulations
,”
Rev. Sci. Instrum.
0034-6748,
78
, p.
035114
.
46.
Beer
,
J.
, and
Chigier
,
N.
, 1972,
Combustion Aerodynamics
,
Wiley
,
New York
.
47.
Im
,
H.
,
Bechtold
,
J.
, and
Law
,
C. K.
, 1996, “
Response of Counterflow Premixed Flames to Oscillating Strain Rates
,”
Combust. Flame
0010-2180,
105
, pp.
358
372
.
48.
Muruganandam
,
T.
, 2006, “
Sensing and Dynamics of Lean Blowout in a Swirl Dump Combustor
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
49.
Zhang
,
Q.
, 2008, “
Lean Blowoff Characteristics of Swirling H2/CO/CH4 Flames
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
You do not currently have access to this content.