This paper describes a numerical analysis of the dynamics of the shaft in the journal bearing of a gear pump. The modulus and direction of the load is a function of the relative position of the gears, causing a precession motion around an equilibrium position. The mean load is the function of the working pressure of the gear pump. The numerical analysis presented in this paper combines the equation of motion of the journal-gear set, based on the linearization of the fluid film load, with calculation of the load due to the pressure distribution on the gears. The damping and stiffness coefficients for the motion equation are calculated with the distributions around the shaft of the pressure and its derivatives. These distributions are calculated from the Reynolds equations using an in-house 2D finite element code with quadrangular elements; the equation of motion is solved with a fifth-order Runge–Kutta scheme. The results provide the stabilized position of the shaft for certain conditions, and allow limitation of the working pressure and the angular velocity of the pump in order to minimize, or to avoid, metal-metal contact and consequent wear of material. The results are compared with experiments and previously reported numerical results.

1.
Booker
,
J.
, 1969, “
Dynamically Loaded Journal Bearings: Maximum Film Pressure
,”
ASME J. Lubr. Technol.
0022-2305,
91
(
3
), pp.
534
543
.
2.
Goenka
,
P. K.
, 1984, “
Dynamically Loaded Journal Bearings: Finite Element Method Analysis
,”
Trans. ASME, J. Tribol.
0742-4787,
106
(
4
), pp.
429
439
.
3.
Aitken
,
M. B.
, and
McCallion
,
H.
, 1992, “
Parametric Minimum Film Thickness Performance of an Elastic Big-End Bearing Under Inertial Load
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
0263-7154,
206
(
1
), pp.
3
12
.
4.
Sharma
,
D.
,
Athre
,
K.
,
Biswas
,
S.
, and
Iyenger
,
S. R. K.
, 1991, “
Solution of Reynolds’ Equation for a Non-Newtonian Lubricant in a Journal Bearing Implementing the Moving Boundary Conditions
,”
Tribol. Int.
0301-679X,
24
(
2
), pp.
85
89
.
5.
Zhang
,
Y.
, 1990, “
Starting Pressure Boundary Conditions for Perturbed Reynolds Equation
,”
ASME J. Tribol.
0742-4787,
112
(
3
), pp.
551
555
.
6.
McIvor
,
J.
, and
Fenner
,
D.
, 1989, “
Finite Element Analysis of Dynamically Loaded Flexible Journal Bearings: A Fast Newton-Raphson Method
,”
Trans. ASME, J. Tribol.
0742-4787,
111
(
4
), pp.
597
603
.
7.
Zhang
,
J. X.
, and
Roberts
,
J. B.
, 1996, “
Solutions for the Combined Motion of Finite Length Squeeze Film Dampers Around the Bearing Center
,”
ASME J. Tribol.
0742-4787,
118
(
3
), pp.
617
622
.
8.
Yu
,
B.
, and
Sawicki
,
J. T.
, 2002, “
Comparison of Mobility Method and Mass Conservation Method in a Study of Dynamically Loaded Journal Bearings
,”
Int. J. Rotating Mach.
1023-621X,
8
(
1
), pp.
71
79
.
9.
Christensen
,
E.
,
Tonnesen
,
J.
, and
Lund
,
J. W.
, 1976, “
Dynamic Film Pressure Measurements in Journal Bearings for Use in Rotor Balancing
,”
ASME J. Eng. Ind.
,
98
(
1
), pp.
92
100
.
10.
Klit
,
P.
, and
Lund
,
J.
, 1986, “
Calculation of the Dynamic Coefficients of a Journal Bearing, Using a Variational Approach
,”
Trans. ASME, J. Tribol.
0742-4787,
108
, pp.
421
425
.
11.
Mitchell
,
J.
,
Holmes
,
R.
, and
Byrne
,
J.
, 1965, “
Oil Whirl of a Rigid Rotor in 360 Journal Bearings: Further Characteristics
,”
Proc. Inst. Mech. Eng.
0020-3483,
180
, pp.
593
609
.
12.
Myrick
,
S. T. J.
, and
Rylander
,
H. G.
, 1976, “
Analysis of Flexible Rotor Whirl and Whip Using a Realistic Hydrodynamic Journal Bearing Model
,”
ASME J. Eng. Ind.
0022-0817,
98
(
4
),
1135
1144
,.
13.
Kirk
,
R. G.
, and
Gunter
,
E. J.
, 1975, “
Short Bearing Analysis Applied to Rotor Dynamics. Part 1. Theory
,“
ASME J. Lubr. Technol.
0022-2305,
98
(
1
), pp.
47
56
.
14.
Kirk
,
R. G.
, and
Gunter
,
E. J.
, 1976, “
Short Bearing Analysis Applied to Rotor Dynamics Part 2. Results of Journal Bearing Response
,”
ASME J. Lubr. Technol.
0022-2305,
98
(
2
), pp.
319
329
.
15.
Rao
,
T.
,
Biswas
,
S.
,
Hirani
,
H.
, and
Athre
,
K.
, 2000, “
Analytical Approach to Evaluate Dynamic Coefficients and Nonlinear Transient Analysis of a Hydrodynamic Journal Bearing
,”
Tribol. Trans.
1040-2004,
43
(
1
), pp.
109
115
.
16.
Kakoty
,
S. K.
, and
Majumdar
,
B. C.
, 2000, “
Effect of Fluid Inertia on Stability of oil Journal Bearings
,”
ASME J. Tribol.
0742-4787,
122
(
4
), pp.
741
745
.
17.
Pai
,
R.
, and
Majumdar
,
B. C.
, 1991, “
Stability of Submerged Oil Journal Bearings Under Dynamic Load
,”
Wear
0043-1648,
146
, pp.
125
135
.
18.
Jang
,
G. H.
,
Lee
,
S. H.
, and
Kim
,
H. W.
, 2006, “
Finite Element Analysis of the Coupled Journal and Thrust Bearing in a Computer Hard Disk Drive
,”
ASME J. Tribol.
0742-4787,
128
(
2
), pp.
335
340
.
19.
Jang
,
G. H.
, and
Yoon
,
J. W.
, 2002, “
Nonlinear Dynamic Analysis of a Hydrodynamic Journal Bearing Considering the Effect of a Rotating or Stationary Herringbone Groove
,”
ASME J. Tribol.
0742-4787,
124
(
2
), pp.
297
304
.
20.
Jang
,
G. H.
, and
Yoon
,
J. W.
, 2003, “
Stability Analysis of a Hydrodynamic Journal Bearing With Rotating Herringbone Grooves
,”
ASME J. Tribol.
0742-4787,
125
(
2
), pp.
291
300
.
21.
Gutes
,
M.
, 2008, “
Estudio de un cojinete hidrodinámico y movimiento del eje conducido en una bomba de engranajes externos
,” Ph.D. thesis, Technical University of Catalonia, Terrassa, Barcelona.
22.
Hamrock
,
B. J.
, 1994,
Fundamentals of Fluid Film Lubrication
,
McGraw-Hill
,
New York
.
23.
Lund
,
J. W.
, and
Thomsen
,
K. K.
, 1978, “
A Calculation Method and Data for the Dynamic Coefficients of oil Lubricated Journal Bearings
,”
Topics in Fluid Film Bearing and Rotor Bearing System
,
ASME
,
New York
, pp.
1
28
.
24.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in Fortran 77
,
Cambridge University Press
,
Cambridge, England
.
25.
Castilla
,
R.
,
Gutes
,
M.
,
Gamez-Montero
,
P. J.
, and
Codina
,
E.
, 2009, “
Experimental Study of the Shaft Motion in the Journal Bearing of a Gear Pump
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
131
, p.
052502
.
26.
El-Shafei
,
A.
, 1995, “
Modeling Fluid Inertia Forces of Short Journal Bearings for Rotordynamic Applications
,”
ASME J. Vibr. Acoust.
0739-3717,
117
, pp.
462
469
.
You do not currently have access to this content.