Fuel Cell/Gas Turbine (FC/GT) hybrid technology is promising, but introduces challenges in system operation and control. For base-load applications, changes in ambient conditions perturb the system and it becomes difficult to maintain constant power production by the FC/GT system. If the FC/GT hybrid system is load-following, then the problem becomes even more complex. In the current study, a dynamic model of a FC/GT power plant is developed with system controls. Two cases are evaluated: (1) system controls are developed to maintain constant power and process control within acceptable constraints and (2) the FC/GT power plant is set in power following mode connected in parallel to the grid for a daily load profile scenario. Changing ambient conditions are employed in the dynamic analysis for both cases. With appropriate attention to design of the system itself and the control logic, the challenges for dynamic system operation and control can be addressed.

1.
Bessette
,
N. F.
, 1994, “
Modeling and Simulation for SOFC Power Systems
,”
Mechanical Engineering
,
Georgia Institute of Technology
,
Atlanta
, p.
209
.
2.
Costamagna
,
P.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2001, “
Design and Part-Load Performance of a Hybrid System Based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine
,”
J. Power Sources
0378-7753,
96
(
2
), pp.
352
368
.
3.
Costamagna
,
P.
,
Selimovic
,
A.
,
Del Borghi
,
M.
, and
Agnew
,
G.
, 2004, “
Electrochemical Model of the Integrated Planar Solid Oxide Fuel Cell (IP-SOFC)
,”
Chem. Eng. J.
0300-9467,
102
(
1
), pp.
61
69
.
4.
Massardo
,
A. F.
, and
Lubelli
,
F.
, 2000, “
Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT): Part A—Cell Model and Cycle Thermodynamic Analysis
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
122
, pp.
27
35
.
5.
Rao
,
A. D.
, and
Samuelsen
,
G. S.
, 2002, “
Analysis Strategies for Tubular Solid Oxide Fuel Cell Based Hybrid
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
503
509
.
6.
Yi
,
Y.
,
Smith
,
T. P.
,
Brouwer
,
J.
, and
Rao
,
A. D.
, 2003, “
Simulation of a 220kW Hybrid SOFC Gas Turbine System and Data Comparison
,”
Proc.-Electrochem. Soc.
0161-6374,
7
, pp.
1442
1454
.
7.
Gemmen
,
R. S.
,
Liese
,
E.
,
Rivera
,
J. G.
,
Jabbari
,
F.
, and
Brouwer
,
J.
, 2000, “
Development of Dynamic Modeling Tools for Solid Oxide and Molten Carbonate Hybrid Fuel Cell Gas Turbine Systems
,” ASME Paper No. 2000-GT-0552.
8.
Liese
,
E. A.
,
Gemmen
,
R. S.
,
Jabbari
,
F.
, and
Brouwer
,
J.
, 1999, “
Technical Development Issues and Dynamic Modeling of Gas Turbine and Fuel Cell Hybrid Systems
,”ASME Paper No. 99-GT-360.
9.
Liese
,
E. A.
, and
Gemmen
,
R. S.
, 2002, “
Dynamic Modeling Results of a 1MW Molten Carbonate Fuel Cell/Gas Turbine Power System
,” ASME Paper No. GT-2002-30110.
10.
Lukas
,
M. D.
,
Lee
,
K. Y.
, and
Ghezel-Ayagh
,
H.
, 1999, “
Development of a Stack Simulation Model for Control Study on Direct Reforming Molten Carbonate Fuel Cell power Plant
,”
IEEE Trans. Energy Convers.
0885-8969,
14
, pp.
1651
1657
.
11.
Lukas
,
M. D.
,
Lee
,
K. Y.
, and
Ghezel-Ayagh
,
H.
, 2000, “
Operation and Control of Direct Reforming Fuel Cell Power Plant
,”
IEEE Trans. Energy Convers.
0885-8969,
14
, pp.
1651
1657
.
12.
Lukas
,
M. D.
,
Lee
,
K. Y.
, and
Ghezel-Ayagh
,
H.
, 2002, “
Modeling and cycling control of carbonate fuel cell power plants
,”
Control Eng. Pract.
0967-0661,
10
(
2
), pp.
197
206
.
13.
Rivera
,
J. G.
, 2000, “
Numerical Analysis of a Molten Carbonate Fuel Cell
,” Master’s thesis, University of California, Irvine, Irvine, CA.
14.
Roberts
,
R. A.
, 2005, “
A Dynamic Fuel Cell-Gas Turbine Hybrid Simulation Methodology to Establish Control Strategies and an Improved Balance of Plant
,” Ph.D. thesis, University of California, Irvine, Irvine, CA, p.
316
.
15.
Roberts
,
R. A.
, and
Brouwer
,
J.
, 2006, “
Dynamic Simulation of a Pressurized 220kW Solid Oxide Fuel Cell-Gas Turbine Hybrid System: Modeled Performance Compared to Measured Results
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
18
25
.
16.
Roberts
,
R. A.
,
Mason
,
J.
,
Jabbari
,
F.
,
Brouwer
,
J.
,
Samuelsen
,
S.
,
Liese
,
E.
, and
Gemmen
,
R.
, 2003, “
Inter-Laboratory Dynamic Modeling of a Carbonate Fuel Cell for Hybrid Application
,” ASME Paper No. GT2003-38774.
17.
Roberts
,
R. A.
,
Brouwer
,
J.
,
Liese
,
E.
, and
Gemmen
,
R. S.
, 2004, “
Dynamic Simulation of Carbonate Fuel Cell-Gas Turbine Hybrid Systems
,” ASME Paper No. GT2004-53653.
18.
Roberts
,
R. A.
,
Brouwer
,
J.
,
Liese
,
E.
, and
Gemmen
,
R. S.
, 2005, “
Development of Controls for Dynamic Operation of Carbonate Fuel Cell-Gas Turbine Hybrid Systems
,” ASME Paper No. GT2005-68774.
19.
Willis
,
J.
, 2005, “
Capstone Microturbines
,”
ICEPAG
, Sep. 7–8, 2005,
APEP
,
Irvine, CA
.
20.
Kim
,
J.-W.
et al.
, 1999, “
Polarization Effects in Intermediate Temperature, Anode-Supported Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
146
(
1
), pp.
69
78
.
21.
Magistri
,
L.
,
Traverso
,
A.
,
Cerutti
,
F.
,
Bozzolo
,
M.
,
Costamagna
,
P.
, and
Massardo
,
A. F.
, 2005, “
Modeling of Pressurized Hybrid Systems Based on Integrated Planar Solid Oxide Fuel Cells (IP-SOFC) Technology
,”
Fuel Cells
1615-6846, Topical Issue “Modelling of Fuel Cell Systems,”
1
(
5
), Wiley-VCH.
You do not currently have access to this content.