Atmospheric and high pressure rig tests were conducted to investigate the feasibility of using biodiesel as an alternative fuel to power industrial gas turbines in one of the world’s leading dry low emissions (DLE) combustion systems, the SGT-100. At the same conditions, tests were also carried out for mineral diesel to provide reference information to evaluate biodiesel as an alternative fuel. In atmospheric pressure rig tests, the likelihood of the machine lighting was identified based on the measured probability of the ignition of a single combustor. Lean ignition and extinction limits at various air temperatures were also investigated with different air assist pressures. The ignition test results reveal that reliable ignition can be achieved with biodiesel across a range of air mass flow rates and air fuel ratios (AFRs). In high pressure rig tests, emissions and combustion dynamics were measured for various combustor air inlet pressures, temperatures, combustor wall pressure drops, and flame temperatures. These high pressure rig results show that biodiesel produced less NOx than mineral diesel. The test results indicate that the Siemens DLE combustion system can be adapted to use biodiesel as an alternative fuel without major modification.

1.
Campbell
,
A.
,
Goldmeer
,
J.
,
Healy
,
T.
,
Washam
,
R.
,
Molière
,
M.
, and
Citeno
,
J.
, 2008, “
Heavy Duty Gas Turbines Fuel Flexibility
,” ASME Paper No. GT2008-51368.
2.
Molière
,
M.
,
Panarotto
,
E.
,
Aboujaib
,
M.
,
Bisseaud
,
J. M.
,
Campbell
,
A.
,
Citeno
,
J.
,
Mire
,
P. A.
, and
Ducrest
,
L.
, 2007, “
Gas Turbines in Alternative Fuel Applications: Biodiesel Field Test
,” ASME Paper No. GT2007-27212.
3.
Tate
,
R. E.
,
Watts
,
K. C.
,
Allen
,
C. A. W.
, and
Wilkie
,
K. I.
, 2006, “
The Densities of Three Biodiesel Fuels at Temperature up to 300°C
,”
Fuel
0016-2361,
85
, pp.
1004
1009
.
4.
Tate
,
R. E.
,
Watts
,
K. C.
,
Allen
,
C. A. W.
, and
Wilkie
,
K. I.
, 2006, “
The Viscosities of Three Biodiesel Fuels at Temperature up to 300°C
,”
Fuel
0016-2361,
85
, pp.
1010
1015
.
5.
Lapuerta
,
M.
,
Herreros
,
J. M.
,
Lyons
,
L. L.
,
García-Contreras
,
R.
, and
Yolanda Briceño
,
Y.
, 2008, “
Effect of the Alcohol Type Used in the Production of Waste Cooking Oil Biodiesel on Diesel Performance and Emissions
,”
Fuel
0016-2361,
87
, pp.
3161
3169
.
6.
Lupandin
,
V.
,
Thamburaj
,
R.
, and
Nikolayev
,
A.
, 2005, “
Test Results of the OGT2500 Gas Turbine Engine Running on Alternative Fuels: Biooil, Ethanol, Biodiesel and Crude Oil
,” ASME Paper No. GT2005-68488.
7.
Bolszo
,
C.
,
McDonell
,
V.
, and
Samuelsen
,
S.
, 2007, “
Impact of Biodiesel on Fuel Preparation and Emissions for a Liquid Fired Gas Turbine Engine
,” ASME Paper No. GT2007-27652.
8.
Chiang
,
H. W. D.
,
Chiang
,
I. C.
, and
Li
,
H. L.
, 2007, “
Performance Testing of Mircoturbine Generator System Fueled by Biodiesel
,” ASME Paper No. GT2007-28075.
9.
Panchasara
,
H
,
Simmons
,
B. M.
,
Agrawal
,
A. K.
,
Spear
,
S. K.
, and
Daly
,
D. T.
, 2008, “
Combustion Performance of Biodiesel and Diesel-Vegetable Oil Blends in a Simulated Gas Turbine Burner
,” ASME Paper No. GT2008-51496.
10.
Sequera
,
D.
,
Agrawal
,
A. K.
,
Spear
,
S. K.
, and
Daly
,
D. T.
, 2007, “
Combustion Performance of Liquid Bio-Fuels in a Swirl-Stabilized Burner
,” ASME Paper No. GT2007-28326.
11.
Wilson
,
C.
,
Blakey
,
S.
,
Darbyshire
,
O.
,
Woolley
,
R.
,
Cornwell
,
S.
,
Sidaway
,
T.
, and
Weiss
,
S.
, 2007,
Preparing the Way for Gas Turbines to Run on Alternative Fuel, Developments in Industrial Burner Technology to Meet the Challenges of the Efficient Combustion of New and Difficult Fuels
,
British Flame
,
Birmingham, UK
.
12.
Odgers
,
J.
, and
Krestschmer
,
D.
, 1986,
Gas Turbine Fuels and Their Influence on Combustion, Energy and Engineering Science Series
,
A. K.
Gupta
and
D. G.
Lilley
, eds.,
Abacus
,
Kent, England
.
13.
Wilbraham
,
N.
, 2005, “
G30 DLE Pilot Liquid Fuel System-Fleet-Wide Development Status
,” Siemens Industrial Turbomachinery Ltd. Internal Report No. TDR 05/223.
14.
Martin
,
D. A.
, 1999, “
Production and Development DLE RM Liquid Primary Air Assist Lance Tests on the LP Rig
,” Siemens Industrial Turbomachinery Ltd. Internal Report No. TDR 99/012.
15.
Lefebvre
,
A. H.
, 1999,
Gas Turbine Combustion
,
2nd ed.
,
New York
.
16.
Syed
,
J. K.
, and
Buchanan
,
E.
, 2005, “
The Nature of NOx Formation Within an Industrial Gas Turbine Dry Low Emission Combustor
,” ASME Paper No. GT2005-68070.
17.
Eberius
,
H.
,
Just
,
T.
,
Kelm
,
S.
,
Warnatz
,
J.
, and
Nowak
,
U.
, 1987, “
Konversion von brennstoffgebundenem Stickstoff am Beispiel von dotierten Propan-Luft-Flammen
,”
VDI-Ber.
0083-5560,
645
, pp.
626
645
.
18.
Warnatz
,
J.
,
Maas
,
U.
, and
Dibble
,
R. W.
, 2006,
Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation
,
4th ed.
,
Springer
,
New York
.
19.
Nicol
,
D.
,
Malte
,
P. C.
,
Lai
,
J.
,
Marinov
,
N. N.
, and
Pratt
,
D. T.
, 1992, “
NOx Sensitivities for Gas Turbine Engines Operated on Lean-Premixed Combustion and Convertional Diffusion Flames
,” ASME Paper No. 92-GT-115.
20.
Wedlock
,
M.
,
Wood
,
J. P.
,
Miller
,
M. N.
,
Sims
,
G. J.
,
Liu
,
K.
,
Syed
,
K.
,
Bowen
,
P.
,
Crayford
,
A.
, and
Sevcenco
,
Y.
, 2008, “
Detailed Internal Measurements of a Siemens Combustor Operating at Gas Turbine Relevant Conditions
,”
ASME
Paper No. GT2008-50790.
You do not currently have access to this content.