The process, which includes production, collection, carriage, and transformation of biomass into renewable fuels and then into energy (both electrical and thermal), involves a large number of decisions to select the most efficient plant layout. In order to identify the optimal solutions, models, which simulate the whole process, represent a useful and practical tool. In this paper, the energy and economic analysis of the entire process from biomass to energy production is presented. Among the different transformation processes, the thermophilic batch anaerobic digestion is considered in this paper. The analyses performed allow the comparison of the results for different scenarios characterized by different types of biomass (ensiled corn and organic fraction of municipal solid wastes), yearly mass of biomass, anaerobic digestion process parameters (number of yearly batch cycles and number of batch digesters), and type of energy systems (micro gas turbine and internal combustion engine). The results are presented in terms of classical economic indices for the investment and of producible electric and thermal energy. With respect to the economic indices, micro gas turbines allow a higher profitability than internal combustion engines, mainly because internal combustion engines require a scrubbing system to remove hydrogen sulphide from biogas. The contrary occurs with the producible electric and thermal energy. With regard to the digested substance, even if the methane yield is lower for organic fraction of municipal solid wastes than for ensiled corn, the net present values for organic fraction of municipal solid wastes are always higher than those obtained by using ensiled corn, and they are always positive, since municipal waste digestion avoids their disposal costs. The efficiency of the cogeneration process, evaluated in terms of primary energy saving index, usually shows quite high values and confirm the good capability of these systems.

1.
Parikka
,
M.
, 2004, “
Global Biomass Fuel Resources
,”
Biomass Bioenergy
,
27
(
6
), pp.
613
620
. 0961-9534
2.
Akhmatov
,
V.
, and
Knudsen
,
H.
, 2007, “
Large Penetration of Wind and Dispersed Generation Into Danish Power Grid
,”
Electr. Power Syst. Res.
0378-7796,
77
, pp.
1228
1238
.
3.
Paatero
,
J. V.
, and
Lund
,
P. D.
, 2007, “
Effects of Large-Scale Photovoltaic Power Integration on Electricity Distribution Networks
,”
Renewable Energy
0960-1481,
32
, pp.
216
234
.
4.
Arscott
,
L.
, 2004, “
Sustainable Development in the Oil & Gas Industry
,”
ASME J. Energy Resour. Technol.
0195-0738,
126
, pp.
1
5
.
5.
Said
,
C.
, 2007, “
Nothing Flat About Tortilla Prices
,” San Francisco Chronicle, p.
C
-
1
.
6.
Jordan
,
N.
,
Boody
,
G.
,
Broussard
,
W.
,
Glover
,
J. D.
,
Keeny
,
D.
,
McCown
,
B. H.
,
McIsaac
,
G.
,
Muller
,
M.
,
Murray
,
H.
,
Neal
,
J.
,
Pansing
,
C.
,
Turner
,
R. E.
,
Warner
,
K.
, and
Wyse
,
D.
, 2007, “
Sustainable Development of the Agricultural Bio-Economy
,”
Science
,
316
, pp.
1570
1571
. 0036-8075
7.
Righelato
,
R.
, and
Spracklen
,
D. V.
, 2007, “
Carbon Mitigation by Biofuels or by Saving and Restoring Forests?
,”
Science
,
317
, p.
902
. 0036-8075
8.
MacLean
,
H. L.
, and
Lave
,
L. B.
, 2003, “
Evaluating Automobile Fuel/Propulsion System Technologies
,”
Prog. Energy Combust. Sci.
0360-1285,
29
, pp.
1
69
.
9.
Read
,
P.
, 2008, “
Biosphere Carbon Stock Management: Addressing the Threat of Abrupt Climate Change in the Next Few Decades: An Editorial Essay
,”
Clim. Change
,
87
, pp.
305
320
. 0165-0009
10.
Fargione
,
J.
,
Hill
,
J.
,
Tilman
,
D.
,
Polasky
,
S.
, and
Hawthorne
,
P.
, 2008, “
Land Clearing and the Biofuel Carbon Debt
,”
Science
,
319
, pp.
1235
1238
. 0036-8075
11.
Sofer
,
S. S.
, and
Zaborsky
,
O. R.
, 1981,
Biomass Conversion Processes for Energy and Fuels
,
Plenum
,
New York
.
12.
Anani
,
A.
,
Jibrill
,
Z.
, and
Abu-Allan
,
F.
, 1990, “
Standardized Charts for Cost-Benefit Analysis of Biogas Systems: Case Study in Jordan
,”
Sol. Wind Technol.
0741-983X,
7
, pp.
229
236
.
13.
Gunaseelan
,
V. N.
, 1997, “
Anaerobic Digestion of Biomass for Methane Production: A Review
,”
Biomass Bioenergy
,
13
, pp.
83
114
. 0961-9534
14.
Zhang
,
R.
, and
Zhang
,
Z.
, 1999, “
Biogasification of Rice Straw With an Anaerobic-Phased Solids Digester System
,”
Bioresour. Technol.
,
68
, pp.
235
245
. 0960-8524
15.
McKendry
,
P.
, 2002, “
Energy Production From Biomass (Part 1): Overview of Biomass
,”
Bioresour. Technol.
,
83
, pp.
37
46
. 0960-8524
16.
Bohn
,
D.
, and
Lepers
,
J.
, 2003, “
Effects of Biogas Combustion on the Operation Characteristics and Pollutant Emissions of a Micro Gas Turbine
,” ASME Paper No. GT2003-38767.
17.
Fantozzi
,
F.
,
D’Alessandro
,
B.
, and
Desideri
,
U.
, 2003, “
IPRP—Integrated Pyrolysis Regenerated Plant—An Efficient and Scalable Concept for Gas Turbine Based Energy Conversion From Biomass and Waste
,” ASME Paper No. GT2003-38653.
18.
Jurado
,
F.
,
Cano
,
A.
, and
Carpio
,
J.
, 2003, “
Modeling of Combined Cycle Power Plants Using Biomass
,”
Renewable Energy
0960-1481,
28
, pp.
743
753
.
19.
Rodrigues
,
M.
,
Walter
,
A.
, and
Faaij
,
A.
, 2003, “
Co-Firing of Natural Gas and Biomass Gas in Biomass Integrated Gasification/Combined Cycle System
,”
Energy
,
28
, pp.
1115
1131
. 0360-5442
20.
Green
,
A. E. S.
,
Swanson
,
G. P.
, and
Najafi
,
F. T.
, 2004, “
Co-Utilization of Fossil and Renewable Fuel: Biomass Gas/Natural Gas
,” ASME Paper No. GT2004-54194.
21.
Jurado
,
F.
,
Cano
,
A.
, and
Carpio
,
J.
, 2004, “
Biomass Based Micro-Turbine Plant and Distribution Network Stability
,”
Energy Convers. Manage.
,
45
, pp.
2713
2727
. 0196-8904
22.
Green
,
A.
, and
Feng
,
J.
, 2005, “
Assessment of Technologies for Biomass Conversion to Electricity at the Wild Land-Urban Interface
,” ASME Paper No. GT2005-68294.
23.
Lupandin
,
V.
,
Thamburaj
,
R.
, and
Nikolayev
,
A.
, 2005, “
Test Results of the OGT2500 Gas Turbine Engine Running on Alternative Fuels: Biooil, Ethanol, Biodiesel and Crude Oil
,” ASME Paper No. GT2005-68488.
24.
Parker
,
W. J.
, 2005, “
Application of ADM1 Model to Advanced Anaerobic Digestion
,”
Bioresour. Technol.
,
96
, pp.
1832
1842
. 0960-8524
25.
Dornburg
,
V.
,
Faaij
,
A. P. C.
, and
Meuleman
,
B.
, 2006, “
Optimising Waste Treatment Systems—Part A: Methodology and Technological Data for Optimising Energy Production and Economic Performance
,”
Resour. Conserv. Recycling
,
49
, pp.
68
88
. 0921-3449
26.
Porta
,
M.
,
Traverso
,
A.
, and
Marigo
,
L.
, 2006, “
Thermoeconomic Analysis of a Small-Size Biomass Gasification Plant for Combined Heat and Distributed Power Generation
,” ASME Paper No. GT2006-90918.
27.
Bettocchi
,
R.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Venturini
,
M.
,
Cenci
,
G.
, and
Morini
,
M.
, 2007, “
Energy Production From Biomass: Development of a General Model and Application to Anaerobic Digestion
,” ASME Paper No. GT2007-27039.
28.
Murphy
,
J. D.
, and
Power
,
N.
, 2007, “
A Technical, Economic, and Environmental Analysis of Energy Production From Newspaper in Ireland
,”
Waste Manage.
,
27
, pp.
177
192
. 0956-053X
29.
Benefield
,
L. D.
, and
Randall
,
C. W.
, 1985, “
Sludge Digestion
,”
Biological Process Design for Wastewater Treatment
,
Ibis
,
Charlottesville, VA
, Chap. 8.
30.
Rittmann
,
B. E.
, and
McCarty
,
P. L.
, 2001, “
Anaerobic Treatment by Methanogenesis
,”
Environmental Biotechnology: Principles and Applications
(
Biological Sciences
),
McGraw-Hill
,
New York
, Chap. 13.
31.
Kalia
,
V. C.
, and
Joshi
,
A. P.
, 1995, “
Conversion of Waste Biomass (Pea-Shells) Into Hydrogen and Methane Through Anaerobic Digestion
,”
Bioresour. Technol.
,
53
, pp.
165
168
. 0960-8524
32.
Jeyaseelan
,
S.
, 1997, “
A Simple Mathematical Model for Anaerobic Digestion Process
,”
Water Sci. Technol.
0273-1223,
35
(
8
), pp.
185
191
.
33.
Kiely
,
G.
,
Tayfur
,
G.
,
Dolan
,
C.
, and
Tanji
,
K.
, 1997, “
Physical and Mathematical Modelling of Anaerobic Digestion of Organic Wastes
,”
Water Sci. Technol.
,
31
(
3
), pp.
534
540
. 0273-1223
34.
Keshtkar
,
A.
,
Meyssami
,
B.
,
Abolhamd
,
G.
,
Ghaforian
,
H.
, and
Khalagi Asadi
,
M.
, 2003, “
Mathematical Modeling of Non-Ideal Mixing Continuous Flow Reactors for Anaerobic Digestion of Cattle Manure
,”
Bioresour. Technol.
,
87
, pp.
113
124
. 0960-8524
35.
Blumensaat
,
F.
, and
Keller
,
J.
, 2005, “
Modeling of Two-Stage Anaerobic Digestion Using the IWA Anaerobic Digestion Model No. 1 (ADM1)
,”
Water Res.
0043-1354,
39
, pp.
171
183
.
36.
Thuesen
,
G. J.
, and
Fabrycky
,
W. J.
, 2000,
Engineering Economy
(
International Series in Industrial and Systems Engineering
),
9th ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
37.
Macchi
,
E.
,
Campanari
,
S.
, and
Silva
,
P.
, 2005,
La microgenerazione a gas naturale
,
Polipress
,
Milano, Italy
, in Italian.
38.
Thermoflow Inc., 2007, THERMOFLOW 17, Release 1, Sudbury, MA.
39.
1994, “
Heating and Cooling of Buildings. Climatic Data
,” Italian National Standard, Paper No. UNI 10349, in Italian.
40.
Schafer
,
W.
, 2003, “
Biogas On-Farm: Energy and Material Flow
,”
Proceedings of the Nordic Association of Agricultural Scientists 22nd Congress
, Turku, Finland, Jul. 1–4.
41.
Murphy
,
J. D.
,
McKeogh
,
E.
, and
Kiely
,
G.
, 2004, “
Technical/Economic/Environmental Analysis of Biogas Utilization
,”
Appl. Energy
,
77
, pp.
407
427
. 0306-2619
42.
Kolanowski
,
B. F.
, 2004,
Guide to Microturbines
,
Fairmont
,
Lilburn, GA
.
43.
U.S. Environmental Protection Agency (EPA), 2001, “
Compilation of Air Pollutant Emission Factors
,” Report No. AP-42.
44.
Berglund
,
M.
, and
Börjesson
,
P.
, 2006, “
Assessment of Energy Performance in the Life-Cycle of Biogas Production
,”
Biomass Bioenergy
,
30
, pp.
254
266
. 0961-9534
45.
Hamelinck
,
C. N.
,
Suurs
,
R. A. A.
, and
Faaij
,
A. P. C.
, 2005, “
International Bioenergy Transport Costs and Energy Balance
,”
Biomass Bioenergy
,
29
, pp.
114
134
. 0961-9534
46.
Murphy
,
J. D.
, and
McCarthy
,
K.
, 2005, “
The Optimal Production of Biogas for Use as a Transport Fuel in Ireland
,”
Renewable Energy
0960-1481,
30
, pp.
2111
2127
.
47.
National Institute of Statistics (Istat), http://www.istat.it/english.htmlhttp://www.istat.it/english.html.
48.
Commission of the European Communities
, 2004, “
Directive 2004/8/EC of the European Parliament and of the Council of 11 February 2004 on the promotion of Cogeneration Based on a Useful Heat Demand in the Internal Energy Market and Amending Directive 92/42/EEC
,”
Official Journal of the European Union
,
L52
, pp.
50
60
.
49.
Commission of the European Communities
, 2007, “
Commission Decision of 21 December 2006 Establishing Harmonised Efficiency Reference Values for Separate Production of Electricity and Heat in Application of Directive 2004/8/EC of the European Parliament and of the Council
,”
Official Journal of the European Union
,
L32
, pp.
183
188
.
You do not currently have access to this content.