Thermal barrier coatings (TBCs) are used to reduce the actual working temperature of the high pressure turbine blade metal surface. Knowing the temperature of the surface of the TBC and at the interface between the bondcoat and the thermally grown oxide (TGO) under realistic conditions is highly desirable. As the major life-controlling factors for TBC systems are thermally activated, therefore linked with temperature, this would provide useful data for a better understanding of these phenomena and to assess the remaining lifetime of the TBC. This knowledge could also enable the design of advanced cooling strategies in the most efficient way using minimum amount of air. The integration of an on-line temperature detection system would enable the full potential of TBCs to be realized due to improved precision in temperature measurement and early warning of degradation. This, in turn, will increase fuel efficiency and reduce CO2 emissions. The concept of a thermal-sensing TBC was first introduced by Choy, Feist, and Heyes (1998, “Thermal Barrier Coating With Thermoluminescent Indicator Material Embedded Therein,” U.S. Patent U.S. 6974641 (B1)). The TBC is locally modified so it acts as a thermographic phosphor. Phosphors are an innovative way of remotely measuring temperatures and also other physical properties at different depths in the coating using photo stimulated phosphorescence (Allison and Gillies, 1997, “Remote Thermometry With Thermographic Phosphors: Instrumentation and Applications,” Rev. Sci. Instrum., 68(7), pp. 2615–2650). In this study the temperature dependence of several rare earth doped EB-PVD coatings will be compared. Details of the measurements, the influence of aging, the composition, and the fabrication of the sensing TBC will be discussed in this paper. The coatings proved to be stable and have shown excellent luminescence properties. Temperature detection at ultrahigh temperatures above 1300°C is presented using new types of EB-PVD TBC ceramic compositions. Multilayer sensing TBCs will be presented, which enable the detection of temperatures below and on the surface of the TBC simultaneously.

1.
Ruud
,
J.
,
Lau
,
Y. C.
, and
Kwasniewski
,
V.
, 2003, “
Increased Fuel Efficiency and Decreased Emissions Through TBCs
,” available at http://statusreports.atp.nist.gov/reports/95-07-0018TEXT.htmlhttp://statusreports.atp.nist.gov/reports/95-07-0018TEXT.html
2.
Cheruvu
,
N. S.
,
Chan
,
K. S.
, and
Viswanathan
,
R.
, 2006, “
Evaluation, Degradation and Life Assessment of Coatings for Land Based Combustion Turbines
,”
Energy Mater.: Mater. Sci. Eng. Energy Syst.
1748-9237,
1
(
1
), pp.
34
47
.
3.
Kerr
,
C.
, and
Ivey
,
P.
, 2002, “
An Overview of the Measurement Errors Associated With Gas Turbine Aeroengine Pyrometer Systems
,”
Meas. Sci. Technol.
0957-0233,
13
, pp.
873
881
.
4.
Singh
,
R.
, 2003,
Civil Aero Gas Turbines: Technology & Strategy
,
Aero India
,
Bangalore, India
.
5.
Boyce
,
M. P.
, 2001,
Gas Turbine Engineering Handbook
,
2nd ed.
,
Gulf Professional Publishing
,
Houston
.
6.
Allison
,
S. W.
, and
Gillies
,
G. T.
, 1997, “
Remote Thermometry With Thermographic Phosphors: Instrumentation and Applications
,”
Rev. Sci. Instrum.
0034-6748,
68
(
7
), pp.
2615
2650
.
7.
Noel
,
B. W.
,
Borella
,
H. M.
,
Lewis
,
W.
,
Turley
,
W. D.
,
Beshears
,
D. L.
,
Capps
,
G. J.
,
Cates
,
M. R.
, and
Tobin
,
K. W.
, 1991, “
Evaluating Thermographic Phosphors in an Operating Turbine Engine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
113
(
2
), pp.
242
245
.
8.
Choy
,
K. -L.
,
Feist
,
J. P.
,
Heyes
,
A. L.
, and
Su
,
B.
, 1999, “
Eu-Doped Y2O3 Phosphor Films Produced by Electrostatic-Assisted Chemical Vapor Deposition
,”
J. Mater. Res.
,
14
(
7
), pp.
3111
3114
. 0884-2914
9.
Bird
,
C.
,
Mutton
,
J. E.
,
Shepherd
,
R.
,
Smith
,
M. D. W.
, and
Watson
,
H. M. L.
, 1997, “
Surface Temperature Measurement in Turbines
,”
Advanced Non-Intrusive Instrumentation for Propulsion Engines
,
AGARD Conference Proceedings
, Brussels, Belgium, Vol.
598
, pp.
21.4
21.10
.
10.
Tobin
,
K. W.
, Jr.
,
Beshears
,
D. L.
,
Noel
,
B. W.
,
Turley
,
W. D.
, and
Lewis
,
W.
, III
, 1991, “
Fiber Sensor Design for Turbine Engines
,”
Proc. SPIE
0277-786X,
Ninth Fiber Optic and Laser Sensors
, Boston, MA, Vol.
1584
, pp.
23
31
.
11.
Noel
,
B. W.
,
Borella
,
H. M.
,
Franks
,
L. A.
,
Marshall
,
B. R.
,
Allison
,
S. W.
,
Stange
,
W. A.
, and
Cates
,
M. R.
, 1986, “
Proposed Laser-Induced Fluorescence Method for Remote Thermometry in Turbine Engines
,”
Jet Propul.
,
2
(
6
), pp.
565
568
. 0095-8751
12.
Tobin
,
K. W.
,
Allison
,
S. W.
,
Cates
,
M. R.
,
Capps
,
G. J.
,
Beshears
,
D. L.
,
Cyr
,
M.
, and
Noel
,
B. W.
, 1990, “
High-Temperature Phosphor Thermometry of Rotating Turbine Blades
,”
AIAA J.
,
28
(
8
), pp.
1485
1490
. 0001-1452
13.
Ranson
,
R. M.
,
Thomas
,
C. B.
, and
Craven
,
M. R.
, 1998, “
A Thin Coating for Phosphor Thermography
,”
Meas. Sci. Technol.
0957-0233,
9
, pp.
1947
1950
.
14.
Mannik
,
L.
,
Brown
,
S. K.
, and
Campbell
,
S. R.
, 1987, “
Phosphor-Based Thermometry of Rotating Surfaces
,”
Appl. Opt.
,
26
(
18
), pp.
4014
4017
. 0003-6935
15.
Feist
,
J. P.
, and
Heyes
,
A. L.
, 2000, “
Europium-Doped Yttria-Stabilized Zirconia for High-Temperature Phosphor Thermometry
,”
Proc. Inst. Mech. Eng., IMechE Conf.
,
214
, pp.
7
11
.
16.
Feist
,
J. P.
, 2001, “
Development of Phosphor Thermometry for Gas Turbines
,” Ph.D. thesis, University of London, London, UK.
17.
Alaruri
,
S.
,
McFarland
,
D.
,
Brewington
,
A.
,
Thomas
,
M.
, and
Sallee
,
N.
, 1995, “
Development of Fiber-Optic Probe for Thermographic Phosphor Measurements in Turbine Engines
,”
Opt. Lasers Eng.
,
22
, pp.
17
31
. 0143-8166
18.
Alaruri
,
S.
,
Bonsett
,
T.
,
Brewington
,
A.
,
McPheeters
,
E.
, and
Wilson
,
M.
, 1999, “
Mapping the Surface Temperature of Ceramic and Superalloy Turbine Engine Components Using Laser-Induced Fluorescence of Thermographic Phosphor
,”
Opt. Lasers Eng.
,
31
, pp.
345
351
. 0143-8166
19.
Brübach
,
J.
,
Zetterberg
,
J.
,
Omrane
,
A.
,
Li
,
Z. S.
,
Aldén
,
M.
, and
Dreizler
,
A.
, 2006, “
Determination of Surface Normal Temperature Gradients Using Thermographic Phosphors and Filtered Rayleigh Scattering
,”
Appl. Phys. B
0946-2171,
84
, pp.
537
541
.
20.
Chyu
,
M. K.
, and
Bizzak
,
D. J.
, 1994, “
Surface Temperature Measurement Using a Laser-Induced Fluorescence Thermal Imaging System
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
263
266
.
21.
Feist
,
J. P.
,
Heyes
,
A. L.
,
Choy
,
K. L.
, and
Su
,
B.
, 1999, “
Phosphor Thermometry for High Temperature Gas Turbine Applications
,”
18th International Congress on Instrumentation in Aerospace Simulation Facilities
, Toulouse, France, pp.
6.1
6.7
.
22.
Feist
,
J. P.
, and
Heyes
,
A. L.
, 2000, “
The Characterization of Y2O2S:Sm Powder as a Thermographic Phosphor for High Temperature Applications
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
942
947
.
23.
Feist
,
J. P.
,
Heyes
,
A. L.
, and
Seefeldt
,
S.
, 2002, “
Thermographic Phosphors for Gas Turbines: Instrumentation Development and Measurement Uncertainties
,”
11th International Symposium on Application of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal.
24.
Feist
,
J. P.
,
Heyes
,
A. L.
, and
Seefeldt
,
S.
, 2003, “
Thermographic Phosphor Thermometry for Film Cooling Studies in Gas Turbine Combustors
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
217
, pp.
193
200
.
25.
Eldridge
,
J. L.
,
Bencic
,
T. J.
,
Allison
,
S. W.
, and
Beshears
,
D. L.
, 2004, “
Depth-Penetrating Temperature Measurements of Thermal Barrier Coatings Incorporating Thermographic Phosphors
,”
J. Therm. Spray Technol.
,
13
, pp.
44
50
. 0002-7820
26.
Heyes
,
A. L.
,
Seefeldt
,
S.
, and
Feist
,
J. P.
, 2006, “
Two-Colour Thermometry for Surface Temperature Measurement
,”
Opt. Laser Technol.
,
38
, pp.
257
265
. 0030-3992
27.
Feist
,
J. P.
,
Heyes
,
A. L.
, and
Nicholls
,
J. R.
, 2001, “
Phosphor Thermometry in an Electron Beam Physical Vapour Deposition Produced Thermal Barrier Coating Doped With Dysprosium
,”
Proc. Inst. Mech. Eng., Part G, J. Aerosp. Eng.
,
215
, pp.
333
341
.
28.
Goss
,
L. P.
,
Smith
,
A. A.
, and
Post
,
M. E.
, 1989, “
Surface Thermometry by Laser-Induced Fluorescence
,”
Rev. Sci. Instrum.
0034-6748,
60
(
12
), pp.
3702
3706
.
29.
Allison
,
S. W.
,
Boatner
,
L. A.
, and
Gillies
,
G. T.
, 1995, “
Characterization of High-Temperature Thermographic Phosphors: Spectral Properties of LuPO4:Dy(1%), Eu(2%)
,”
Appl. Opt.
0003-6935,
34
(
25
), pp.
5624
5627
.
30.
Omrane
,
A.
,
Ossler
,
F.
, and
Aldén
,
M.
, 2004, “
Temperature Measurements of Combustible and Non-Combustible Surfaces Using Laser Induced Phosphorescence
,”
Exp. Therm. Fluid Sci.
,
28
(
7
), pp.
669
676
. 0894-1777
31.
Edge
,
A. C.
,
Laufer
,
G.
, and
Krauss
,
R. H.
, 2000, “
Surface Temperature-Field Imaging With Laser-Induced Thermographic Phosphorescence
,”
Appl. Opt.
,
39
(
4
), pp.
546
553
. 0003-6935
32.
Heyes
,
A. L.
, 2004,
Thermographic Phosphor Thermometry Applications in Engineering
(VKI Lecture Series on Advanced Measurement Techniques for Aero and Stationary Gas Turbines), von Karman Institute, Rhode St. Genese, Belgium.
33.
Amano
,
K.
,
Takeda
,
H.
,
Suzuki
,
T.
,
Tamatani
,
M.
,
Itoh
,
M.
, and
Takahashi
,
Y.
, 1987, “
Thermal Barrier Coating
” U.S. Patent No. 4,774,150.
34.
Choy
,
K. -L.
,
Heyes
,
A. L.
, and
Feist
,
J.
, 1998, “
Thermal Barrier Coating With Thermoluminescent Indicator Material Embedded Therein
,” U.S. Patent No. 6,974,641.
35.
Gentleman
,
M. M.
, and
Clarke
,
D. R.
, 2005, “
Luminescence Sensing of Temperature in Pyrochlore Zirconate Materials for Thermal Barrier Coatings
,”
Surf. Coat. Technol.
0257-8972,
200
, pp.
1264
1269
.
36.
Gentleman
,
M. M.
, and
Clarke
,
D. R.
, 2004, “
Concepts of Luminescence Sensing of Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
188–189
, pp.
93
100
. 0257-8972
37.
Gentleman
,
M. M.
,
Eldridge
,
J. I.
,
Zhu
,
D. M.
,
Murphy
,
K. S.
, and
Clarke
,
D. R.
, 2006, “
Non-Contact Sensing of TBC/BC Interface Temperature in a Thermal Gradient
,”
Surf. Coat. Technol.
,
201
, pp.
3937
3941
. 0257-8972
38.
Chen
,
X.
,
Mutasim
,
Z.
,
Price
,
J.
,
Feist
,
J. P.
,
Heyes
,
A. L.
, and
Seefeldt
,
S.
, 2005, “
Industrial Sensor TBCs: Studies on Temperature Detection and Durability
,”
Int. J. Appl. Ceram. Technol.
1546-542X,
2
(
5
), pp.
414
421
.
39.
Feist
,
J. P.
,
Nicholls
,
J. R.
,
Fraser
,
M. J.
, and
Heyes
,
A. L.
, 2006, “
Luminescent Material Compositions and Structures Incorporating the Same
,” Patent No. PCT/GB2006/003177.
40.
Srivastava
,
A. M.
,
Setlur
,
A. A.
,
Comanzo
,
H. A.
,
Devitt
,
J. W.
,
Ruud
,
J. A.
, and
Brewer
,
L. N.
, 2001, “
Apparatus for Determining Past-Service Conditions and Remaining Life of Thermal Barrier Coatings and Components Having Such Coatings
,” U.S. Patent No. 6730918B2.
41.
Feist
,
J. P.
, and
Heyes
,
A. L.
, 2003, “
Coatings and an Optical Method for Detecting Corrosion Process in Coatings
,” Patent EP1660757 (A1).
42.
Eldridge
,
J. I.
,
Bensic
,
T. J.
,
Spuckler
,
C. M.
,
Singh
,
J.
, and
Wolfe
,
D. E.
, 2006, “
Delamination-Indicating Thermal Barrier Coatings Using YSZ:Eu Sublayer
,”
J. Am. Ceram. Soc.
0002-7820,
89
(
10
), pp.
3246
3251
.
43.
Eldridge
,
J. I.
,
Singh
,
J.
, and
Wolfe
,
D. E.
, 2006, “
Erosion-Indicating Thermal Barrier Coating Using Luminescent Sublayers
,”
J. Am. Ceram. Soc.
0002-7820,
89
(
10
), pp.
3252
3254
.
44.
Choy
,
K. -L.
,
Mei
,
J.
,
Feist
,
J. P.
, and
Heyes
,
A. L.
, 2000, “
Microstructure and Thermoluminescent Properties of ESAVD Produced Eu Doped Y2O3–ZrO2 Coatings
,”
Surf. Eng.
,
16
(
6
), pp.
469
472
. 0267-0844
45.
Nicholls
,
J. R.
,
Lawson
,
K. J.
,
Johnstone
,
A.
, and
Rickerby
,
D. S.
, 2002, “
Methods to Reduce the Thermal Conductivity of EB-PVD TBCs
,”
Surf. Coat. Technol.
,
151–152
, pp.
383
391
. 0257-8972
46.
Padture
,
N. P.
,
Gell
,
M.
, and
Klemens
,
P. G.
, 2000, “
Ceramic Materials for Thermal Barrier Coatings
,” U.S. Patent No. 6,015,630.
47.
Klemens
,
P. G.
, and
Gell
,
M.
, 1998, “
Thermal Conductivity of Thermal Barrier Coatings
,”
Mater. Sci. Eng., A
0921-5093,
245
, pp.
143
149
.
48.
Su
,
Y. J.
,
Trice
,
R. W.
,
Faber
,
K. T.
,
Wang
,
H.
, and
Porter
,
W. D.
, 2004, “
Thermal Conductivity, Phase Stability and Oxidation Resistance of Y3Al5O12 (YAG)/Y2O3–ZrO2 (YSZ) Thermal-Barrier Coatings
,”
Oxid. Met.
0030-770X,
61
(
3/4
), pp.
253
271
.
49.
Noel
,
B. W.
,
Turley
,
W. D.
, and
Lewis
,
W.
, 1992, “
Non-Intrusive Temperature Measurements on Advanced Turbomachinery Components
,”
Second Latin American Conference on Turbomachinery
, Guernavaca, Mexico, p.
23
.
50.
Cates
,
M.
, and
Allison
,
S.
, 2002, “
Phosphor Thermometry Tutorial
,” available at http://www.ornl.gov/sci/phosphors/Pdfs/tutorial.pdfhttp://www.ornl.gov/sci/phosphors/Pdfs/tutorial.pdf
51.
Blasse
,
G.
, 1979, “
Chemistry and Physics of R-Activated Phosphors
,”
Handbook on the Physics and Chemistry of Rare Earths
,
K. A.
Gschneidner
, Jr.
and
L.
Eyring
, eds.,
North-Holland
,
Amsterdam
, pp.
237
255
.
52.
Weber
,
M. J.
, 1968, “
Radiative and Multiphonon Relaxation of Rare-Earth Ions in Y2O3
,”
Phys. Rev.
0031-899X,
171
(
2
), pp.
283
291
.
53.
Orbach
,
R.
, 1975,
Optical Properties of Ions in Solids
,
B.
Di Batolo
, ed.,
Plenum
,
New York
.
54.
Miyakawa
,
T.
, and
Dexter
,
D. L.
, 1970, “
Phonon Sidebands, Multi-Phonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer Between Ions in Solids
,”
Phys. Rev. B
0163-1829,
1
, pp.
2961
2969
.
55.
Hufner
,
S.
, 1978,
Optical Spectra of Transparent Rare Earth Compounds
,
Academic
,
New York
.
56.
Henderson
,
B.
, and
Imbusch
,
G. F.
, 1989,
Optical Spectroscopy of Inorganic Solids
,
Oxford University Press
,
New York
.
57.
Riseberg
,
L. A.
, and
Moos
,
H. W.
, 1968, “
Multiphonon Orbit-Lattice Relaxation of Excited States of Rare-Earth Ions in Crystals
,”
Phys. Rev.
,
174
(
2
0031-899X), pp.
429
438
.
58.
Gentleman
,
M. M.
,
Lughi
,
V.
,
Nychka
,
J. A.
, and
Clarke
,
D. R.
, 2006, “
Noncontact Methods for Measuring Thermal Barrier Coating Temperatures
,”
Int. J. Appl. Ceram. Technol.
1546-542X,
3
(
2
), pp.
105
112
.
59.
Struck
,
C. W.
, and
Fonger
,
W. H.
, 1976, “
Quantum Mechanical Treatment of Eu+3 4f−−>4f and 4f Charge-Transfer-State Transitions in Y2O2S and La2O2S
,”
J. Chem. Phys.
0021-9606,
64
, pp.
1784
1790
.
60.
Struck
,
C. W.
, and
Fonger
,
W. H.
, 1970, “
Role of the Charge-Transfer States in Feeding and Thermally Emptying the D5 States of Eu+3 in Yttrium and Lanthanum Oxysulfides
,”
J. Lumin.
,
1–2
, pp.
456
469
. 0022-2313
61.
Hoshina
,
T.
, 1983, “
Luminescence of Rare Earth Ions
,” Sony Research Centre Report.
62.
Vanvalzah
,
J. R.
, and
Eaton
,
H. E.
, 1991, “
Cooling Rate Effects on the Tetragonal to Monoclinic Phase Transformation in Aged Plasma-Sprayed Yttria Partially Stabilized Zirconia
,”
Surf. Coat. Technol.
,
46
, pp.
289
300
. 0257-8972
63.
Chambers
,
M. D.
, and
Clarke
,
D. R.
, 2006, “
Effect of Long Term, High Temperature Aging on Luminescence From Eu-Doped YSZ Thermal Barrier Coatings
,”
Surf. Coat. Technol.
0257-8972,
201
, pp.
3942
46
.
64.
Weber
,
M. J.
, 1979,
Handbook on the Physics and Chemistry of Rare Earths
,
K. A.
Gschneidner
, Jr.
and
L.
Eyring
, eds.,
North-Holland
,
Amsterdam
, pp.
275
315
.
65.
Blasse
,
G.
, and
Grabmaier
,
B. C.
, 1994,
Luminescent Materials
,
Springer-Verlag
,
Berlin
.
66.
Mehta
,
R.
, 2006, “
Sensing a Solution
,”
Mater. World
0967-8638,
4
(
6
), p.
12
.
You do not currently have access to this content.