Haynes alloy HR-120 (Haynes and HR-120 are trademarks of Haynes International, Inc.) forms a protective oxide scale when exposed to the harsh operating environment of a microturbine primary surface recuperator. Primary surface recuperators manufactured from HR-120 are currently in use on the Capstone C65 MicroTurbine (MicroTurbine is a registered trademark of Capstone Turbine Corporation). Long-term microturbine tests of this alloy are currently being conducted at an elevated turbine exit temperature (100°F higher than that in a normal operation) at Capstone Turbine Corporation. Alloy samples that have been tested under steady-state microturbine operating conditions are removed after predetermined exposure intervals for characterization by Capstone Turbine Corporation in collaboration with Oak Ridge National Laboratory. Such evaluations include the characterization of surface oxide scales and the associated alloy compositional changes following a steady-state operation ranging from 1800 h to 14,500 h. Results from the microstructural and compositional analyses of these long-term steady-state engine-tested HR-120 samples are used to illustrate the progression of alloy oxidation in the microturbine operating environment.

1.
Kang
,
Y.
, and
McKeirnan
,
R.
, 2003, “
Annular Recuperator Development and Performance Testing for 200kW Microturbine
,” ASME Paper No. GT2003-38552.
2.
Treece
,
B.
,
Vessa
,
P.
, and
McKeirnan
,
R.
, 2002, “
Microturbine Recuperator Manufacturing and Operating Experience
,” ASME Paper No. GT-2002-30404.
3.
Pint
,
B. A.
, and
Peraldi
,
R.
, 2003, “
Factors Affecting Corrosion Resistance of Recuperator Alloys
,” ASME Paper No. GT2003-38692.
4.
Rakowski
,
J. M.
, 2001, “
The Oxidation of Austenitic Stainless Steel Foils in Humidified Air
,” ASME Paper No. 2001-GT-0360.
5.
Pint
,
B. A.
,
Swindeman
,
R. W.
,
More
,
K. L.
, and
Tortorelli
,
P. F.
, 2001, “
Materials Selection for High Temperature (750–1000°C) Metallic Recuperators for Improved Efficiency Microturbines
,” ASME Paper No. 2001-GT-0445.
6.
Pint
,
B. A.
,
More
,
K. L.
, and
Tortorelli
,
P. F.
, 2002, “
The Effect of Water Vapor on Oxidation Performance of Alloys Used in Recuperators
,” ASME Paper No. GT-2002-30543.
7.
Rakowski
,
J. M.
, 2003, “
The Oxidation of Metal Alloy Foils in the Presence of Water Vapor
,” ASME Paper No. GT2003-38059.
8.
Pint
,
B. A.
, and
More
,
K. L.
, 2004, “
Stainless Steels With Improved Oxidation Resistance for Recuperators
,” ASME Paper No. GT2004-53627.
9.
Matthews
,
W. J.
,
More
,
K. L.
, and
Walker
,
L. R.
, 2007, “
Accelerated Oxidation of Type 347 Stainless Steel Primary Surface Recuperators Operating Above 600°C
,” ASME Paper No. GT2007-27190.
10.
Evans
,
H. E.
,
Donaldson
,
A. T.
, and
Gilmour
,
T. C.
, 1999, “
Mechanisms of Breakaway Oxidation and Application to a Chromia-Forming Steel
,”
Oxid. Met.
0030-770X,
52
(
5/6
), pp.
379
401
.
11.
Pint
,
B. A.
, and
Rakowski
,
J. M.
, 2000, “
Effect of Water Vapor on the Oxidation Resistance of Stainless Steels
,” presented at NACE Corrosion 2000, NACE Paper No. 00-259.
12.
Rakowski
,
J. M.
,
Stinner
,
C. P.
,
Lipschutz
,
M.
, and
Montague
,
J. P.
, 2004, “
The Use and Performance of Oxidation and Creep-Resistant Stainless Steels in an Exhaust Gas Primary Surface Recuperator Application
,” ASME Paper No. GT2004-53917.
13.
Maziasz
,
P. J.
,
Pint
,
B. A.
, and
Swindeman
,
R. W.
, 2003, “
Selection, Development and Testing of Stainless Steels and Alloys for High-Temperature Recuperator Applications
,” ASME Paper No. GT2003-38762.
14.
Lara-Curzio
,
E.
,
More
,
K. L.
,
Maziasz
,
P. J.
, and
Pint
,
B. A.
, 2004, “
Screening and Evaluation of Materials for Microturbine Recuperators
,” ASME Paper No. GT2004-54254.
15.
Maziasz
,
P. J.
,
Pint
,
B. A.
,
Shingledecker
,
J. P.
,
More
,
K. L.
,
Evans
,
N. D.
, and
Lara-Curzio
,
E.
, 2004, “
Austenitic Stainless Steels and Alloys With Improved High-Temperature Performance for Advanced Microturbine Recuperators
,” ASME Paper No. GT2004-54239.
16.
Matthews
,
W. J.
,
Bartel
,
T.
,
Klarstrom
,
D. L.
, and
Walker
,
L. R.
, 2005, “
Engine Testing of an Advanced Alloy for Microturbine Primary Surface Recuperators
,” ASME Paper No. GT2005-68781.
17.
Matthews
,
W. J.
, 2006, “
Additional Engine Testing of an Advanced Alloy for Microturbine Primary Surface Recuperators
,” ASME Paper No. GT2006-90068.
18.
Rakowski
,
J. M.
,
Stinner
,
C. P.
,
Lipschutz
,
M.
, and
Montague
,
J. P.
, 2007, “
Environmental Degradation of Heat-Resistant Alloys During Exposure to Simulated and Actual Gas Turbine Recuperator Environments
,” ASME Paper No. GT2007-27949.
19.
Pint
,
B. A.
,
Shingledecker
,
J. P.
,
Brady
,
M. P.
, and
Maziasz
,
P. J.
, 2007, “
Alumina-Forming Austenitic Alloys for Advanced Recuperators
,” ASME Paper No. GT2007-27916.
20.
ASTM B 409, “
Standard Specification for Nickel-Iron-Chromium Alloy Plate, Sheet, and Strip
,” ASTM International, West Conshohocken, PA, Paper No. UNS N08120.
21.
AMS 5512, “
Steel, Corrosion and Heat Resistant, Sheet, Strip, and Plate 18Cr–0.5Ni–0.80Cb (SAE 30347) Solution Heat Treated
,” Aerospace Material Specification, SAE International, Warrendale, PA, Paper No. UNS S34700.
22.
Pint
,
B. A.
, 2005, “
The Effect of Water Vapor on Cr Depletion in Advanced Recuperator Alloys
,” ASME Paper No. GT2005-68495.
23.
Confidential and proprietary internal correspondence, Capstone Turbine Corporation.
You do not currently have access to this content.