The purpose of the current work is to analyze and also to verify the operating behavior of a solid oxide fuel cell/gas turbine (GT) hybrid system in order to derive necessary requirements for an appropriate control system. The studies are carried out with a control oriented simplified dynamic model of a 25MWe hybrid system based on a conceptual design previously presented in literature. As a specific feature additional firing of the GT combustor is investigated. First the design point is defined. Then the off-design performance is presented in terms of characteristic performance maps. Based on operating map investigations an appropriate part-load operating curve is defined with considerations given to constraints (e.g., stack temperature or surge margin), efficiency, and operational flexibility. The load range goes from 40% part-load to 105% overload. To investigate the transient behavior five open loop simulations are carried out changing different model inputs, as well as all model inputs applying a 30% load change according to the operating curve. The simulated behavior reveals that the inputs should be changed with specific care to avoid critical situations during load change.

1.
Miller
,
A.
,
Milewski
,
J.
, and
Salacinski
,
J.
, “
Off-Design Operation of Fuel Cell-Gas Turbine Hybrid System
,” Institute of Heat Engineering, Warsaw University of Technology, Warsaw, Poland.
2.
Sedghisigarchi
,
K.
, and
Feliachi
,
A.
, 2006, “
Impact of Fuel Cells on Load-Frequency Control in Power Distribution Systems
,”
IEEE Trans. Energy Convers.
,
21
(
1
), pp.
250
256
. 0885-8969
3.
Kemm
,
M.
,
Hildebrandt
,
A.
, and
Assadi
,
M.
, 2004, “
Operation and Performance Limitations for Solid Oxide Fuel Cells and Gas Turbines in a Hybrid System
,” ASME Paper No. GT2004-53898.
4.
Hildebrandt
,
A.
,
Genrup
,
M.
, and
Assadi
,
M.
, 2004, “
Steady-State and Transient Compressor Surge Behavior Within a SOFC-GT-Hybrid System
,” ASME Paper No. GT2004-53892.
5.
Costamagna
,
P.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2001, “
Design and Part-Load Performance of a Hybrid System Based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine
,”
J. Power Sources
0378-7753,
96
, pp.
352
368
.
6.
Magistri
,
L.
,
Bozzo
,
R.
,
Costamagna
,
P.
, and
Massardo
,
A. F.
, 2002, “
Simplified Versus Detailed SOFC Reactor Models and Influence on the Simulation of the Design Point Performance of Hybrid Systems
,” ASME Paper No. GT-2002-30653.
7.
Magistri
,
L.
,
Trasino
,
F.
, and
Costamagna
,
P.
, 2004, “
Transient Analysis of Solid Oxide Fuel Cell Hybrids Part A: Fuel Cell Models
,” ASME Paper No. GT2004-53842.
8.
Ferrari
,
M. L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
, 2004, “
Transient Analysis of Solid Oxide Fuel Cell Hybrids Part B: Anode Recirculation Model
,” ASME Paper No. GT2004-53716.
9.
Magistri
,
L.
,
Ferrari
,
M. L.
,
Traverso
,
A.
,
Costamagna
,
P.
, and
Massardo
,
A. F.
, 2004, “
Transient Analysis of Solid Oxide Fuel Cell Hybrids Part C: Whole-Cycle Model
,” ASME Paper No. GT2004-53845.
10.
Ferrari
,
M. L.
,
Magistri
,
L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
, 2005, “
Control System for Solid Oxide Fuel Cell Hybrid Systems
,” ASME Paper No. GT2005-68102.
11.
Stiller
,
C.
,
Thorud
,
B.
, and
Bolland
,
O.
, 2005, “
Safe Dynamic Operation of a Simple SOFC/GT Hybrid System
,” ASME Paper No. GT2005-68481.
12.
Stiller
,
C.
,
Thorud
,
B.
,
Bolland
,
O.
,
Kandepu
,
R.
, and
Imsland
,
L.
, 2006, “
Control Strategy for a Solid Oxide Fuel Cell and Gas Turbine Hybrid System
,”
J. Power Sources
,
158
, pp.
303
315
. 0378-7753
13.
Lundberg
,
W. L.
,
Veyo
,
S. E.
, and
Moeckel
,
M. D.
, 2003, “
A High-Efficiency Solid Oxide Fuel Cell Hybrid Power System Using the Mercury 50 Advanced Turbine Systems Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
51
58
.
14.
Veyo
,
S. E.
,
Lundberg
,
W. L.
,
Vora
,
S. D.
, and
Litzinger
,
K. P.
, 2003, “
Tubular SOFC Hybrid Power System Status
,” ASME Paper No. GT2003-38943.
15.
Campanari
,
S.
, 2001, “
Thermodynamic Model and Parametric Analysis of a Tubular SOFC Module
,”
J. Power Sources
0378-7753,
92
, pp.
26
34
.
16.
Song
,
T. W.
,
Sohn
,
J. L.
,
Kim
,
J. H.
,
Kim
,
T. S.
,
Ro
,
S. T.
, and
Suzuki
,
K.
, 2004, “
Parametric Studies for a Performance Analysis of a SOFC/MGT Hybrid Power System Based on a Quasi-2D Model
,” ASME Paper No. GT2004-53304.
17.
Wächter
,
C.
,
Lunderstädt
,
R.
, and
Joos
,
F.
, 2006, “
Dynamic Model of a Pressurized SOFC/Gas Turbine Hybrid Power Plant for the Development of Control Concepts
,”
J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
271
279
.
18.
Veyo
,
S. E.
,
Shockling
,
L. A.
,
Dederer
,
J. T.
,
Gillet
,
J. E.
, and
Lundberg
,
W. L.
, 2000, “
Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems—Status
,” ASME Paper No. 2000-GT-550.
19.
Campanari
,
S.
, and
Iora
,
P.
, 2004, “
Definition and Sensitivity Analysis of a Finite Volume SOFC Model for a Tubular Cell Geometry
,”
J. Power Sources
0378-7753,
132
, pp.
113
126
.
20.
Gnielinski
,
V.
, 1997,
VDI-Wärmeatlas: Wärmeüber-Tragung bei der Querströmung um Einzelne Rohrreihen und Durch Rohrbündel (8. Auflage
),
Springer
,
Berlin
.
21.
Utriainen
,
E.
, and
Sundén
,
B.
, 2002, “
Evaluation of the Cross Corrugated and Some Other Candidate Heat Transfer Surfaces for Microturbine Recuperators
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
550
560
.
22.
Kurzke
,
J.
, 2001, “
GasTurb 9—A Program to Calculate Design and Off-Design Performance of Gas Turbines
,” Germany, http://www.gasturb.dehttp://www.gasturb.de
You do not currently have access to this content.