In this study, a spatiotemporal characterization of forced and unforced flows of a conical swirler is performed based on particle image velocimetry (PIV) and laser Doppler anemometry (LDA). The measurements are performed at a Reynolds number of 33,000 and a swirl number of 0.71. Axisymmetric forcing is applied to approximate the effects of thermoacoustic instabilities on the flow field at the burner inlet and outlet. The actuation frequencies are set at the natural flow frequency (Strouhal number Stf0.92) and two higher frequencies (Stf1.3 and 1.55) that are not harmonically related to the natural frequency. Phase-averaged measurement are used as a first step to visualize the coherent flow structures. Second, proper orthogonal decomposition (POD) is applied to the PIV data to characterize the effect of the actuation on the fluctuating flow. Measurements indicate a typical natural flow instability of helical nature in the unforced case. The associated induced pressure and flow oscillations travel upstream to the swirler inlet where generally fuel is injected. This observation is of critical importance with respect to the stability of the combustion. Harmonic actuation at different frequencies and amplitudes does not affect the mean velocity profile at the outlet, while the coherent velocity fluctuations are strongly influenced at both the inlet and outlet. On one hand, the dominant helical mode is replaced by an axisymmetric vortex ring if the flow is forced at the natural flow frequency. On the other hand, the natural flow frequency prevails at the outlet under forcing at higher frequencies and POD analysis indicates that the helical structure is still present. The presented results give new insight into the flow dynamics of a swirling flow burner under strong forcing.

1.
Lieuwen
,
T.
, and
Zinn
,
B. T.
, 1998, “
The Role of Equivalence Ratio Oscillations in Driving Combustion Instabilities in Low NOx Gas Turbines
,”
Proceedings of the 27th Symposium (International) on Combustion
,
Combustion Institute
,
Boulder, CO
, Aug. 2–7, pp.
1809
1816
.
2.
Bothien
,
M. R.
,
Moeck
,
J. P.
,
Lacarelle
,
A.
, and
Paschereit
,
C. O.
, 2007, “
Time Domain Modelling and Stability Analysis of Complex Thermoacoustic Systems
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
221
(
5
), pp.
657
668
.
3.
Paschereit
,
C. O.
,
Gutmark
,
E. J.
, and
Weisenstein
,
W.
, 1999, “
Coherent Structures in Swirling Flows and Their Role in Acoustic Combustion Control
,”
Phys. Fluids
1070-6631,
11
, pp.
2667
2678
.
4.
Poinsot
,
T.
,
Trouvé
,
A.
,
Veyante
,
D.
,
Candel
,
S.
, and
Esposito
,
E.
, 1987, “
Vortex Driven Acoustically Coupled Combustion Instabilities
,”
J. Fluid Mech.
0022-1120,
177
, pp.
265
292
.
5.
Panda
,
J.
, and
McLaughlin
,
D. K.
, 1994, “
Experiments on the Instabilities of a Swirling Jet
,”
Exp. Fluids
,
6
, pp.
263
276
. 0723-4864
6.
Syred
,
N.
, 2006, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
0360-1285,
32
, pp.
93
161
.
7.
Lucca-Negro
,
O.
, and
O’Doherty
,
T.
, 2001, “
Vortex Breakdown: A Review
,”
Prog. Energy Combust. Sci.
0360-1285,
27
, pp.
431
481
.
8.
Fernandes
,
E. C.
,
Heitor
,
M. V.
, and
Shtork
,
S. I.
, 2006, “
An Analysis of Unsteady Highly Turbulent Swirling Flow in a Model Vortex Combustor
,”
Exp. Fluids
0723-4864,
40
, pp.
177
187
.
9.
Wang
,
S.
, and
Yang
,
V.
, 2005, “
Unsteady Flow Evolution in Swirl Injectors With Radial Entry. II. External Excitations
,”
Phys. Fluids
1070-6631,
17
, p.
045107
.
10.
Duwig
,
C.
,
Fuchs
,
L.
,
Lacarelle
,
A.
,
Beutke
,
M.
, and
Paschereit
,
C. O.
, 2007, “
Study of the Vortex Breakdown in a Conical Swirler Using LDV, LES and POD
,” ASME Paper No. GT2007-27006.
11.
Paschereit
,
C. O.
, and
Gutmark
,
E. J.
, 2004, “
The Effectiveness of Passive Combustion Control Methods
,” ASME Paper No. 2004-GT-53587.
12.
Rodriguez-Martinez
,
V. M.
,
Dawson
,
J. R.
,
Syred
,
N.
, and
O’Doherty
,
T.
, 2003, “
The Effect of Expansion Plane Geometry on Fluid Dynamics Under Combustion Instability in a Swirl Combustor
,” AIAA Paper No. 2003-116.
13.
Escudier
,
M. P.
, and
Keller
,
J. J.
, 1985, “
Recirculation in Swirling Flow: A Manifestation of Vortex Breakdown
,”
AIAA J.
,
23
, pp.
111
116
. 0001-1452
14.
Paschereit
,
C. O.
,
Oster
,
D.
,
Long
,
T. A.
,
Fiedler
,
H. E.
, and
Wygnanski
,
I.
, 1992, “
Flow Visualization of Interactions Among Large Coherent Structures in an Axisymmetric Jet
,”
Exp. Fluids
0723-4864,
12
, pp.
189
199
.
15.
Suzuki
,
H.
,
Kasagi
,
N.
, and
Suzuki
,
Y.
, 2004, “
Active Control of an Axisymmetric Jet With Distributed Electromagnetic Flap Actuators
,”
Exp. Fluids
,
36
, pp.
498
509
. 0723-4864
16.
Lacarelle
,
A.
,
Moeck
,
J. P.
,
Konle
,
H. J.
,
Vey
,
S.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
, 2007, “
Effect of Fuel/Air Mixing on NOx Emissions and Stability in a Gas Premixed Combustion System
,” AIAA Paper No. 2007-1417.
17.
Khalil
,
S.
,
Hourigan
,
K.
, and
Thompson
,
M. C.
, 2006, “
Response of Unconfined Vortex Breakdown to Axial Pulsing
,”
Phys. Fluids
1070-6631,
18
, p.
038102
.
18.
Sattelmayer
,
T.
,
Felchlin
,
M. P.
,
Haumann
,
J.
,
Hellat
,
J.
, and
Styner
,
D.
, 1990, “
Second Generation Low-Emissions ABB Combustors for Gas Turbines: Burner Development and Tests at Atmospheric Pressure
,” ASME Paper No. 1990-GT-192.
19.
Döbbeling
,
K.
,
Knopfle
,
H. P.
, and
Polifke
,
W.
, 1994, “
Low NOx
Combustion of MBTU Fuels Using the ABB Double Cone Burner (EV Burner),” ASME Paper No. 94-GT-394.
20.
Matsumura
,
M.
, and
Antonia
,
R. A.
, 1993, “
Momentum and Heat Transport in the Turbulent Intermediate Wake of a Circular Cylinder
,”
J. Fluid Mech.
0022-1120,
250
, pp.
651
666
.
21.
Wernert
,
P.
, and
Favier
,
D.
, 1999, “
Considerations About the Phase Averaging Method With Application to ELDV and PIV Measurements Over Pitching Airfoils
,”
Exp. Fluids
0723-4864,
27
, pp.
473
483
.
22.
Sonnenberger
,
R.
,
Graichen
,
K.
, and
Erk
,
P.
, 2000, “
Fourier Averaging: A Phase-Averaging Method for Periodic Flow
,”
Exp. Fluids
0723-4864,
28
, pp.
217
222
.
23.
Holmes
,
P.
,
Lumley
,
J.
, and
Berkooz
,
G.
, 1998,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge, England
.
24.
Gallaire
,
F.
, and
Chomaz
,
J. M.
, 2003, “
Mode Selection in Swirling Jet Experiments: A Linear Stability Analysis
,”
J. Fluid Mech.
0022-1120,
494
, pp.
223
253
.
25.
Roessler
,
M.
, 2006, “
Experimentelle Bestimmung des Akustisch Angeregten Strömungsfeldes an Einem Drall-Brennermodell für Industrielle Gasturbinen
,” Studienarbeit, Technische Universität Berlin.
26.
Keller
,
J. J.
,
Sattelmayer
,
T.
, and
Thüringer
,
F.
, 1991, “
Double Cone Burner for Gas Turbine Type 9 Retrofit Application
,”
Proceedings of the CIMAC 19th International Congress on Combustion Engines
, Florence, Italy.
27.
Flohr
,
P.
,
Schmitt
,
P.
, and
Paschereit
,
C. O.
, 2002, “
Mixing Field Analysis of a Gas Turbine Burner
,” Paper No. IMECE 2002-39317.
28.
Li
,
F.
,
Banaszuk
,
A.
,
Tadmor
,
G.
,
Noack
,
B. R.
, and
Mehta
,
P. G.
, 2006, “
A Reduced Order Galerkin Model for the Reacting Bluff Body Flame Holder
,” AIAA Paper No. 2006-3487.
You do not currently have access to this content.