The fatigue crack growth behavior of Grainex Mar-M 247 is evaluated for NASA’s turbine seal test facility. The facility is used to test air-to-air seals primarily for use in advanced jet engine applications. Because of extreme seal test conditions of temperature, pressure, and surface speeds, surface cracks may develop over time in the disk bolt holes. An inspection interval is developed to preclude catastrophic disk failure by using experimental fatigue crack growth data. By combining current fatigue crack growth results with previous fatigue strain-life experimental work, an inspection interval is determined for the test disk. The fatigue crack growth life of NASA disk bolt holes is found to be 367cycles at a crack depth of 0.501mm using a factor of 2 on life at maximum operating conditions. Combining this result with previous fatigue strain-life experimental work gives a total fatigue life of 1032cycles at a crack depth of 0.501mm. Eddy-current inspections are suggested starting at 665cycles since eddy current detection thresholds are currently at 0.381mm. Inspection intervals are recommended every 50cycles when operated at maximum operating conditions.

1.
Delgado
,
I. R.
,
Halford
,
G. R.
,
Steinetz
,
B. M.
, and
Rimnac
,
C. M.
, 2005, “
Strain-Life Assessment of Grainex Mar-M 247 for NASA’s Turbine Seal Test Facility
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
615
620
.
2.
Coles
,
A.
,
Johnson
,
R. E.
, and
Popp
,
H. G.
, 1976, “
Utility of Surface-Flawed Tensile Bars in Cyclic Life Studies
,”
ASME J. Eng. Mater. Technol.
0094-4289,
98
, pp.
305
315
.
3.
Diez
,
A.
, 2000, “
Crack Formation in Bolt Holes
,” private communication.
4.
Hartman
,
G. A.
, and
Ashbaugh
,
N. E.
, 1990, “
A Fracture Mechanics Test Automation System for a Basic Research Laboratory
,”
Applications of Automation Technology to Fatigue and Fracture Testing
, ASTM STP 1092,
A. A.
Braun
,
N. E.
Ashbaugh
, and
F. M.
Smith
, eds.,
ASTM
,
Philadelphia, PA
, pp.
95
110
.
5.
Ashbaugh
,
N.
, and
Hartman
,
G.
, 1990, “
Direct Current Electric Potential Workshop
,” MATE Workshop, University of Dayton Research Institute.
6.
Gangloff
,
R. P.
,
Slavik
,
D. C.
,
Piascik
,
R. S.
, and
Van Stone
,
R. H.
, 1992, “
Direct Current Electrical Potential Measurement of the Growth of Small Cracks
,”
Small-Crack Test Methods
, ASTM STP 1149,
J. M.
Larsen
and
J. E.
Allison
, eds.,
ASTM
,
Philadelphia, PA
, pp.
116
168
.
7.
Hartman
,
G.
, 2002, “
Questions on MATE Program
,” private communication.
8.
Gangloff
,
R. P.
, 1981, “
Electric Potential Monitoring of Crack Formation and Subcritical Growth From Small Defects
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
4
(
1
), pp.
15
33
.
9.
VanStone
,
R. H.
, and
Richardson
,
T. L.
, 1985, “
Potential-Drop Monitoring of Cracks in Surface-Flawed Specimens
,”
Automated Test Methods for Fracture and Fatigue Crack Growth
, ASTM STP 877,
W. H.
Cullen
,
R. W.
Landgraf
,
L. R.
Kaisand
, and
J. H.
Underwood
, eds.,
ASTM
,
Philadelphia, PA
, pp.
148
166
.
10.
Shannon
,
B.
, 2000, “
Accounting for Thermoelectric Influences
,” private communication.
11.
Shannon
,
B.
, 2003, “
FCG Data Acquisition Rate
,” private communication.
12.
Telesman
,
J.
, 2002, “
Crack Growth Limitations
,” private communication.
13.
Newman
,
J. C.
, Jr.
, and
Raju
,
I. S.
, 1983, “
Stress-Intensity Factor Equations for Cracks in Three-Dimensional Finite Bodies
,”
Fracture Mechanics: Fourteenth Symposium—Volume I: Theory and Analysis
, ASTM STP 791,
J. C.
Lewis
and
G.
Sines
, eds.,
ASTM
,
Philadelphia, PA
, pp.
I
-238–I-
265
.
14.
ASTM Committee E-8 on Fatigue and Fracture
, 1998, “
ASTM E-647–95a Standard Test Method for Measurement of Fatigue Crack Growth Rates
,”
Annual Book of ASTM Standards 2001
,
ASTM
,
West Conshohocken
, Vol.
3
, pp.
577
613
.
15.
Dowling
,
N. E.
, 1999,
Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue
,
Prentice-Hall
,
Upper Saddle River, NJ
.
16.
Neter
,
J.
, and
Wasserman
,
W.
, 1974,
Applied Linear Statistical Models
,
Richard D. Irwin
,
Homewood
.
17.
Howmet Turbine Components Corporation
, TB 3000: Grainex Cast Mar-M 247 Alloy, Howmet Turbine Components Corporation, Greenwich.
18.
Taylor
,
D.
, 1989,
Fatigue Thresholds
,
Butterworths
,
London
.
19.
Bates
,
R. C.
, and
Clark
,
W. G.
, Jr.
, 1969, “
Fractography and Fracture Mechanics
,”
ASM Trans. Q.
0097-3912,
62
(
2
), pp.
380
389
.
20.
Suresh
,
S.
, and
Ritchie
,
R. O.
, 1984, “
Propagation of Short Fatigue Cracks
,”
Int. Met. Rev.
0308-4590,
29
(
6
), pp.
445
476
.
21.
Taylor
,
D.
, 1985,
A Compendium of Fatigue Thresholds and Growth Rates
,
Chameleon
,
London
.
22.
Hertzberg
,
R. W.
, 1989,
Deformation and Fracture Mechanics of Engineering Materials
,
3rd ed.
,
Wiley
,
New York
.
23.
Macha
,
D. E.
,
Cole
,
G. R.
, and
Butzer
,
J. A.
, 1983, “
Fine Grain, Investment-Cast Integral Turbine Wheels
,”
Grain Refinement in Castings and Welds
,
G. J.
Abbaschian
and
S. A.
David
, eds.,
The Metallurgical Society of AIME
,
New York
, pp.
197
219
.
24.
MacIntyre
,
C. A.
, and
Agarwal
,
P. N.
, 1984, “
Development of Fine Grain Cast Mar-M 247 Axial and Radial Turbine Wheels
,”
Advanced Aerospace Materials Technology
, SP-597,
Society of Automotive Engineers, Inc.
,
Warrendale
, pp.
35
45
.
25.
Helmink
,
R. C.
,
Testin
,
R. A.
,
Price
,
A. R.
,
Pachman
,
R.
,
Erickson
,
G. L.
,
Harris
,
K.
,
Nesbitt
,
J. A.
, and
Radavich
,
J. F.
, 2000, “
Advanced Superalloys and Tailored Microstructures for Integrally Cast Turbine Wheels
,”
Superalloys 2000
,
T. M.
Pollock
et al.
, eds.,
TMS
,
Warrendale, PA
, pp.
171
179
.
26.
1995, “
Microcast-X Mar-M 247
,” Alloy Digest.
27.
Kaufman
,
M.
, 1984, “
Properties of Cast Mar-M-247 for Turbine Blisk Applications
,”
Superalloys 1984
,
M.
Gell
,
C. S.
Kortovich
,
R. H.
Bricknell
,
W. B.
Kent
, and
J. F.
Radavich
, eds.,
Metallurgical Society of AIME
,
Warrendale, PA
, pp.
43
52
.
28.
Broek
,
D.
, 1984,
Elementary Engineering Fracture Mechanics
,
3rd ed.
,
Kluwer Boston
,
Hingham
.
29.
Curtis Industries, Inc.
, 2003, “
Reference Standard Calibration for GX Mar-M 247
,” inspection report for reference standard, Curtis Industries, Inc., Pennsylvania.
30.
Tong
,
M.
, and
Steinetz
,
B.
, 1997, “
Mar-M 247 Disk Finite Element Thermal and Stress Analysis
,” NASA Glenn Research Center, Cleveland, OH.
31.
Dowling
,
N. E.
, 1999,
Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue
,
Prentice-Hall
,
Upper Saddle River, NJ
.
32.
Kerlins
,
V.
, and
Phillips
,
A.
, 1987, “
Modes of Fracture
,”
Metals Handbook
, Vol.
12
,
9th ed.
,
ASM International
,
Metals Park
.
You do not currently have access to this content.