The following work presents a new type of hybrid journal bearing developed for enabling oil-free operation of high performance turbomachinery. The new design integrates compliant hydrostatic-hydrodynamic partitioned bearing pads with two flexibly mounted integral wire mesh dampers. The primary aim of the new bearing configuration was to maximize the load-carrying capacity and effective damping levels while maintaining adequate compliance to misalignment and variations in rotor geometry. The concept of operation is discussed along with the description of the bearing design. Several experiments using room temperature air as the working fluid were performed that demonstrate proof of concept, which include lift-off tests, bearing load tests, and rotordynamic characterization tests. The experiments demonstrate stable operation to 40,000 rpm (2.8×106 DN) of a 2.750 in. (70 mm) diameter bearing. In addition to the experimental results, an analytical model is presented for the compliant bearing system. The aeroelastic theory couples the steady state numerical solution of the compressible Reynolds flow equation with a flexible structure possessing translational and rotational compliance. This was achieved by formulating a fluid-structure force balance for each partitioned bearing pad while maintaining a global mass flow balance through the hydrostatic restrictors and bearing lands. Example numerical results for pad pressure profile, film thickness, torque, and leakage are shown.

1.
Hamrock
,
B. J.
, 1994,
Fundamentals of Fluid Film Lubrication
,
McGraw-Hill
,
New York
, pp.
329
330
.
2.
Kingsbury
,
A.
, 1897, “
Experiments With an Air-Lubricated Journal
,”
J. Am. Soc. Nav. Eng.
0099-7056,
9
, pp.
267
292
.
3.
Lund
,
J. W.
, 1967, “
A Theoretical Analysis of Whirl Instability and Pneumatic Hammer for a Rigid Rotor in Pressurized Gas Journal Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
89
(
2
), pp.
154
166
.
4.
Licht
,
L.
,
Fuller
,
D. D.
, and
Sternlicht
,
B.
, 1958, “
Self-Excited Vibrations on an Air-Lubricated Thrust Bearing
,”
Trans. ASME
0097-6822,
80
, pp.
411
414
.
5.
Stowell
,
T. B.
, 1971, “
Pneumatic Hammer in a Gas Lubricated Externally Pressurized Annular Thrust Bearing
,”
ASME J. Lubr. Technol.
0022-2305,
93
, pp.
498
503
.
6.
Talukder
,
H. M.
, and
Stowell
,
T. B.
, 2003, “
Pneumatic Hammer in an Externally Pressurized Orifice-Compensated Air Journal Bearing
,”
Tribol. Int.
0301-679X,
36
(
8
), pp.
585
591
.
7.
Powell
,
J. W.
, 1970, “A Review of Progress in Gas Lubrication,” Review of Physics in Technology, 1, pp. 96–129.
8.
Gross
,
W. A.
, 1962,
Gas Film Lubrication
,
Wiley
,
New York
, p.
279
.
9.
Blok
,
H.
, and
van Rossum
,
J. J.
, 1953, “The Foil Bearing—New Departure in Hydrodynamic Lubrication,” Lubrication Engineering, 9, p. 316.
10.
Patel
,
B. J.
, and
Cameron
,
A.
, 1957, “
The Foil Bearing
,”
Proceedings of the Conference on Lubrication and Wear
, October 1–3, 1957,
Institution of Mechanical Engineers
,
London
, p.
219
.
11.
Dellacorte
,
C.
, and
Valco
,
M. J.
, 2000, “
Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications
,”
Proceedings of the ASME/STLE Tribology Conference in Seattle
, Seattle, WA, Oct. 1–4, STLE Paper No. 00-TC-4.
12.
Heshmat
,
H.
, 1994, “
Advancements in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capability
,”
ASME J. Tribol.
0742-4787,
116
, pp.
287
295
.
13.
San Andres
,
L.
, 2006, “
Hybrid Flexure Pivot-Tilting Pad Gas Bearings: Analysis and Experimental Validation
,”
ASME J. Tribol.
0742-4787,
128
, pp.
551
558
.
14.
Tatara
,
A.
,
Koike
,
H.
, and
Iwasaki
,
A.
, 1973, “
The Stability of Flexibly Supported, Externally Pressurized Gas Journal Bearings
,”
Bull. JSME
0021-3764,
16
(
100
), pp.
1573
1579
.
15.
Boffey
,
D.
, 1978, “
A Study of the Stability of an Externally-Pressurized Gas-Lubricated Thrust Bearing With a Flexible Damped Support
,”
ASME J. Lubr. Technol.
0022-2305,
100
, pp.
364
368
.
16.
Kazimierski
,
Z.
, and
Jarzecki
,
K.
, 1979, “
Stability Threshold of Flexibly Supported Hybrid Gas Journal Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
101
, pp.
451
457
.
17.
Ide
,
R. D.
, and
Zeidan
,
F. Y.
, 1995, “
Integral Squeeze Film Damper Bearings
,” U.S. Patent No. 5,421,655.
18.
Ide
,
R. D.
, 1991, “
Hydrodynamic Bearings Having Beam Mounted Bearing Pads and Sealed Bearing Assemblies Including the Same
,” U.S. Patent No. 5,054,938.
19.
Della Pietra
,
L.
, and
Adiletta
,
G.
, 2002, “
The Squeeze Film Damper Over Four Decades of Investigations. Part I: Characteristics and Operating Features
,”
Shock Vib. Dig.
0583-1024,
34
(
1
), pp.
3
26
.
20.
Adiletta
,
G.
, and
Della Pietra
,
L.
, 2002, “
The Squeeze Film Damper Over Four Decades of Investigations. Part II: Rotordynamic Analyses With Rigid and Flexible Rotors
,”
Shock Vib. Dig.
0583-1024,
34
(
2
), pp.
97
126
.
21.
Zeidan
,
F. Y.
,
San Andres
,
L.
, and
Vance
,
J. M.
, 1996, “
Design and Application of Squeeze Film Dampers in Rotating Machinery
,”
Proceedings of the 25th Turbomachinery Symposium
, Houston, TX, Sept. 17–19,
Texas A&M Turbomachinery Laboratory
,
Houston, TX
, pp.
169
188
.
22.
Childs
,
D. W.
, 1978, “
Space Shuttle Main Engine High-Pressure Fuel Turbopump Rotordynamic Instability Problem
,”
J. Eng. Power
,
100
, pp.
48
57
. 0022-0825
23.
Zarzour
,
M.
, and
Vance
,
J.
, 2000, “
Experimental Evaluation of a Metal Mesh Bearing Damper
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
122
, pp.
326
329
.
24.
Al-Khateeb
,
E. M.
, and
Vance
,
J. M.
, 2001, “
Experimental Evaluation of a Metal Mesh Bearing Damper in Parallel With a Structural Support
,” ASME Paper No. 2001-GT-0247.
25.
Ertas
,
B. H.
,
Al-Khateeb
,
E. M.
, and
Vance
,
J. M.
, 2003, “
Rotordynamic Bearing Dampers for Cryogenic Rocket Engine Turbopumps
,”
J. Propul. Power
0748-4658,
19
(
4
), pp.
674
682
.
26.
Ertas
,
B. H.
, and
Luo
,
H.
, 2007, “
Nonlinear Dynamic Characterization of Oil-Free Wire Mesh Dampers
,” ASME Paper No. DETC2007/VIB-34665.
27.
Okayasu
,
A.
,
Ohta
,
T.
,
Azuma
,
T.
,
Fujita
,
T.
, and
Aoki
,
H.
, 1990, “
Vibration Problems in the LE-7 Liquid Hydrogen Turbopump
,”
Proceedings of the 26th AIAA/SAE/ASME/ ASEE 26th Joint Propulsion Conference
,
AIAA
,
Orlando, FL
, pp.
1
5
.
28.
Ertas
,
B. H.
,
Drexel
,
M.
,
Van Dam
,
J.
, and
Hallman
,
D.
, 2008, “
A General Purpose Test Facility for Evaluating Gas Lubricated Journal Bearings
,”
Proceedings of the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery Honolulu
, Honolulu, HI, Feb. 17–22, Paper No. ISROMAC12-2008-20207.
29.
Dellacorte
,
C.
, 1997, “
A New Foil Air Bearing Test Rig for Use to 700°C and 70,000 rpm
,”
NASA
, Technical Memorandum No. 107405.
30.
Childs
,
D. W.
, and
Hale
,
K.
, 1994, “
A Test Apparatus and Facility to Identify the Rotordynamic Coefficients of High Speed Hydrostatic Bearings
,”
ASME J. Tribol.
0742-4787,
116
, pp.
337
334
.
31.
Ghosh
,
M. K.
, and
Viswanath
,
N. S.
, 1987, “
Recess Volume Fluid Compressibility Effect on the Dynamic Characteristics of Multirecess Hydrostatic Journal Bearings With Journal Rotation
,”
ASME J. Tribol.
,
109
, pp.
417
426
. 0742-4787
32.
San Andres
,
L. A.
, 1992, “
Analysis of Turbulent Hydrostatic Bearings With a Barotropic Cryogenic Fluid
,”
ASME J. Tribol.
0742-4787,
114
, pp.
755
765
.
33.
San Andres
,
L. A.
, 1996, “
Turbulent Flow Flexure Pivot Hybrid Bearings for Cryogenic Applications
,”
ASME J. Tribol.
0742-4787,
118
, pp.
190
200
.
34.
San Andres
,
L. A.
, 2000, “
Bulk Flow Analysis of Hybrid Thrust Bearings for Process Fluid Applications
,”
ASME J. Tribol.
0742-4787,
122
, pp.
170
180
.
35.
Michael
,
W. A.
, 1959, “A Gas Film Lubrication Study Part II: Numerical Solution of the Reynolds Equation of Finite Slider Bearings,” IBM Syst. J., pp. 256–259.
You do not currently have access to this content.