In this study, void drift phenomena, which are one of three components of the intersubchannel fluid transfer, have been investigated experimentally and analytically. In the experiments, data on flow and void redistributions were obtained for hydraulically nonequilibrium flows in a multiple channel consisting of two subchannels simplifying a triangle tight lattice rod bundle. In order to know the effects of the reduced surface tension on the void drift, water and water with a surfactant were used as test liquids. In addition, data on the void diffusion coefficient, D̃, needed in a void drift model, have been obtained from the redistribution data. In the analysis, the flow and the void redistributions were predicted by a subchannel analysis code based on a one-dimensional two-fluid model. From a comparison between the experiment and the code prediction, the present analysis code was found to be valid against the present data if newly developed constitutive equations of wall and interfacial friction were incorporated in to the model to account for the reduced surface tension effects.

1.
Iwamura
,
T.
,
Okubo
,
T.
,
Kureta
,
M.
,
Nakatsukasa
,
T.
, and
Takeda
,
R.
, 2002, “
Development of Reduced-Moderation Water Reactor (RMWR) for Sustainable Energy Supply
,”
Proceedings of 13th Pacific Basin Nuclear Conference
, TS-8C-6,
Shenzhen, China
.
2.
Kureta
,
M.
,
Yoshida
,
H.
,
Ohnuki
,
A.
, and
Akimoto
,
H.
, 2003, “
Experimental Study on Void Fraction in Tight-Lattice Rod Bundles
,”
Proceedings of the Tenth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH 10)
,
Seoul, Korea
.
3.
Lahey
,
R. T.
, Jr.
, and
Moody
,
F. J.
, 1993,
The Thermal-Hydraulics of a Boiling Water Nuclear Reactor
,
2nd ed.
,
ANS
,
La Grange Park
, pp.
168
184
.
4.
Ninokata
,
H.
,
Sadatomi
,
M.
,
Okawa
,
T.
,
Serizawa
,
A.
,
Mishima
,
K.
,
Koshizuka
,
S.
,
Kudo
,
Y.
,
Hotta
,
A.
,
Yamamoto
,
Y.
,
Shirakawa
,
N.
, and
Nishida
,
K.
, 2003, “
Development of Generalized Boiling Transition Analysis Methodology Applicable to a Wide Variety of BWR-Type Fuel Bundle Geometery—Master Plan and Status of First Year
,”
Proceedings of the Tenth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH 10)
,
Seoul, Korea
.
5.
Tamai
,
H.
,
Kureta
,
M.
,
Ohnuki
,
A.
,
Sato
,
T.
, and
Akimoto
,
H.
, 2006, “
Pressure Drop Experiments Using Tight-Lattice 37-Rod Bundles
,”
J. Nucl. Sci. Technol.
0022-3131,
43
(
6
), pp.
699
706
.
6.
Sadatomi
,
M.
,
Kawahara
,
A.
, and
Sato
,
Y.
, 1994, “
Flow Redistribution Due to Void Drift in Two-Phase Flow in a Multiple Channel Consisting of Two Subchannels
,”
Nucl. Eng. Des.
0029-5493,
148
(
2–3
), pp.
463
474
.
7.
Sadatomi
,
M.
,
Kawahara
,
A.
, and
Sato
,
Y.
, 1997, “
Treatment of Two-Phase Turbulent Mixing, Void Drift and Diversion Cross-Flow in a Hydraulically Non-Equilibrium Subchannel Flow
,”
Proceedings of Fourth International Seminar on Subchannel Analysis (ISSCA-4)
,
Tokyo, Japan
, pp.
87
104
.
8.
Kawahara
,
A.
,
Sadatomi
,
M.
,
Kano
,
K.
, and
Sasaki
,
Y.
, 2004, “
Flow Redistribution Phenomena Due to Void Drift in Triangle Tight Lattice Subchannels
,”
Proceedings of Fifth International Conference on Multiphase Flow (ICMF’04)
, Yokohama, Japan, May–Jun., 2004.
9.
Kawahara
,
A.
,
Sadatomi
,
M.
,
Kano
,
K.
,
Sasaki
,
Y.
, and
Kudo
,
H.
, 2006, “
Void Diffusion Coefficient in Two-Phase Void Drift for Several Channels of Two- and Multi-Subchannel Systems
,”
Multiphase Sci. Technol.
0276-1459,
18
(
1
), pp.
31
54
.
10.
Kawahara
,
A.
,
Sadatomi
,
M.
,
Kudo
,
H.
, and
Kano
,
K.
, 2006, “
Single- and Two-Phase Turbulent Mixing Rate Between Subchannels in Triangle Tight Lattice Rod Bundle
,”
JSME Int. J., Ser. B
1340-8054,
49
(
2
), pp.
287
295
.
11.
Kawahara
,
A.
,
Higuchi
,
T.
,
Sadatomi
,
M.
, and
Kudo
,
H.
, 2007, “
Single- and Two-Phase Diversion Cross-Flows Between Triangle Tight Lattice Rod Bundle Subchannels—Data on Flow Resistance Coefficient and Interfacial Friction Coefficients for the Cross-Flow
,”
Journal of Power and Energy Systems
,
1
(
1
), pp.
111
122
.
12.
Sadatomi
,
M.
,
Kawahara
,
A.
,
Kudo
,
H.
, and
Shirai
,
H.
, 2007, “
Effects of Surface Tension on Void Fraction in a Multiple-Channel Simplifying Triangle Tight Lattice Rod Bundle—Measurement and Analysis
,”
Journal of Power and Energy Systems
,
1
(
2
), pp.
143
153
.
13.
Kawahara
,
A.
,
Sadatomi
,
M.
, and
Shirai
,
H.
, 2008, “
Two-Phase Wall and Interfacial Friction Forces in Triangle Tight Lattice Rod Bundle Subchannel
,”
Journal of Power and Energy Systems
,
2
(
1
), pp.
283
294
.
14.
Sadatomi
,
M.
,
Kawahara
,
A.
, and
Sato
,
Y.
, 1995, “
Turbulent Mixing of Both Gas and Liquid Phases Between Subchannels in Two-Phase Hydrodynamic Equilibrium Flows
,”
Proceedings of International Symposium on Two-Phase Flow Modelling and Experimentation 1995
,
G. P.
Celeta
and
R. K.
Shah
, eds., Rome, Vol.
1
, pp.
403
409
.
15.
Kawahara
,
A.
,
Sato
,
Y.
, and
Sadatomi
,
M.
, 1997, “
The Turbulent Mixing Rate and the Fluctuations of Static Pressure Difference Between Adjacent Subchannels in a Two-Phase Subchannel Flow
,”
Nucl. Eng. Des.
0029-5493,
175
, pp.
97
106
.
16.
Gonzalez-Santalo
,
J. M.
, and
Griffith
,
P.
, 1972, “
Two-Phase Flow Mixing in Rod Bundle Subchannel
,” ASME Paper No. 72-WA/NE-19.
17.
Kazimi
,
M. S.
, and
Kelly
,
J. E.
, 1983, “
Formulation of a Two-Fluid Model for Mixing in LWR Bundles
,”
Proceedings of the 2nd International Topical Meeting on Nuclear Reactor Thermal Hydraulics
,
Santa Barbara, CA
, pp.
433
439
.
18.
Tapucu
,
A.
,
Teyssedou
,
A.
,
Tye
,
P.
, and
Troche
,
N.
, 1994, “
The Effect of Turbulent Mixing Models on the Predictions of Subchannel Codes
,”
Nucl. Eng. Des.
0029-5493,
149
, pp.
221
231
.
19.
Ishii
,
M.
, and
Mishima
,
K.
, 1984, “
Two-Fluid Model and Hydrodynamic Constitutive Relations
,”
Nucl. Eng. Des.
0029-5493,
82
, pp.
107
126
.
20.
Beattie
,
D. R. H.
, and
Whalley
,
P. B.
, 1982, “
A Simple Two-Phase Frictional Pressure Drop Calculation Method
,”
Int. J. Multiphase Flow
0301-9322,
8
(
1
), pp.
83
87
.
21.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
, 1969, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
0360-7275,
45
(
1
), pp.
39
48
.
22.
Tomiyama
,
A.
,
Furutani
,
N.
, and
Sakaguchi
,
T.
, 1993, “
Numerical Stability of the One-Pressure Steady Two-Fluid Model
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
0387-5016,
59
(
560
), pp.
1071
1078
(in Japanese).
23.
Fukano
,
T.
, and
Furukawa
,
T.
, 1998, “
Prediction of the Effects of Liquid Viscosity on Interfacial Shear Stress and Frictional Pressure Drop in Vertical Upward Gas-Liquid Annular Flow
,”
Int. J. Multiphase Flow
0301-9322,
24
(
4
), pp.
587
603
.
24.
Wallis
,
G. B.
, 1969,
One-Dimensional Two-Phase Flow
,
McGraw-Hill
,
New York
.
25.
Chierici
,
G. L.
,
Ciucci
,
G. M.
, and
Sclocchi
,
G.
, 1974, “
Two-Phase Vertical Flow in Oil Wells—Prediction of Pressure Drop
,”
JPT, J. Pet. Technol.
0149-2136,
26
(
8
), pp.
927
938
.
26.
Ali
,
M.
,
Sadatomi
,
M.
, and
Kawaji
,
M.
, 1993, “
Adiabatic Two-Phase Flow in Narrow Channels Between Two Flat Plates
,”
Can. J. Chem. Eng.
0008-4034,
71
, pp.
657
666
.
27.
Liles
,
D. R.
,
Spore
,
J. W.
,
Knight
,
T. D.
,
Nelson
,
R. A.
,
Cappiello
,
M. W.
,
Pasamehmetoglu
,
K. O.
,
Mahaffy
,
J. H.
,
Guffee
,
L. A.
,
Stumpf
,
H. J.
,
Dotson
,
P. J.
,
Steinke
,
R. G.
,
Shire
,
P. R.
,
Greiner
,
S. E.
, and
Sherwood
,
K. B.
, 1988, “
TRAC-PF1/MOD1—Correlations and Methods
,” Report Nos. NUREG/GR-5069 and LA-11208-MS.
28.
Ransom
,
V. H.
et al.
, 1985, “
RELAP5/MOD2 Code Manual, Volume I, Code Structure, System Models, and Solution Methos
,” Report Nos. NUREG/CR-4312 and EGG-2796.
29.
Ninokata
,
H.
,
Aritomi
,
M.
,
Anegawa
,
T.
,
Sato
,
Y.
,
Sadatomi
,
M.
,
Mishima
,
K.
,
Nishida
,
K.
,
Yamamoto
,
Y.
,
Morooka
,
S.
,
Yabushita
,
Y.
,
Sou
,
A.
,
Kamo
,
H.
, and
Kusuno
,
S.
, 1997, “
Development of the NASCA Code for Prediction of Transient BT and Post BT Phenomena in BWR Rod Bundles
,”
Proceedings of Fourth International Seminar on Subchannel Analysis (ISSCA-4)
,
Tokyo, Japan
, pp.
231
265
.
30.
Welter
,
K. B.
,
Kelly
,
J. M.
, and
Bajorek
,
S. M.
, 2006, “
Assessment of TRACE Code Using Rod Bundle Heat Transfer Mixture Level-Swell Tests
,”
Proceedings of 14th International Conference on Nuclear Engineering (ICONE14)
, Miami, FL, Paper No. ICONE14-89756.
31.
Mishima
,
K.
, and
Ishii
,
M.
, 1984, “
Flow Regime Transition Criteria for Upward Two-Phase Flow in Vertical Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
27
(
5
), pp.
723
737
.
32.
Kawahara
,
A.
,
Sadatomi
,
M.
, and
Iwamoto
,
K.
, 2000, “
Calculation of Two-Phase Flow Redistribution Due to Void Drift in Two-Interconnected Subchannels by a Two-Fluid Model
,”
Proceedings of Second Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS2)
,
Fukuoka, Japan
, pp.
719
725
.
You do not currently have access to this content.