Laminar flame speeds and strain sensitivities of mixtures of H2 and air or air highly diluted with N2 (O2:N2 1:9) have been measured for a range of equivalence ratios at high preheat conditions (700K) using a nozzle generated, 1D, laminar, wall stagnation flame. The measurements are compared with numerical predictions based on three detailed kinetic models (GRIMECH 3.0, a H2CO mechanism from Davis et al. (2004, “An Optimized Kinetic Model of H2∕CO Combustion,” Proc. Combust. Inst., 30, pp. 1283–1292) and a H2 mechanism from Li et al. (2004, “An Updated Comprehensive Kinetic Model of Hydrogen Combustion,” Int. J. Chem. Kinet., 36, pp. 566–575)). Sensitivity of the measurements to uncertainties in boundary conditions, e.g., wall temperature and nozzle velocity profile (plug or potential), is investigated through detailed numerical simulations and shown to be small. The flame speeds and strain sensitivities predicted by the models for preheated reactants are in reasonable agreement with the measurements for mixtures of H2 and standard air at very lean conditions. For H2 and N2 diluted air, however, all three mechanisms significantly overpredict the measurements, and the overprediction increases for leaner mixtures. In contrast, the models underpredict flame speeds for room temperature mixtures of H2 with both standard and N2 diluted air, based on comparisons with measurements in literature. Thus, we find that the temperature dependence of the hydrogen flame speed as predicted by all the models is greater than the actual temperature dependence (for both standard and diluted air). Finally, the models are found to underpredict the measured strain sensitivity of the flame speed for H2 burning in N2 diluted air, especially away from stoichiometric conditions.

1.
Moliere
,
M.
, 2002, “
Benefiting From the Wide Fuel Capability of Gas Turbines: A Review of Application Opportunities
,” ASME Paper No. GT-2002-30017.
2.
Klimstra
,
J.
, 1986, “
Interchangeability of Gaseous Fuels—The Importance of the Wobbe Index
,” SAE Paper No. 861578.
3.
Scholte
,
T. G.
, and
Vaags
,
P. B.
, 1959, “
Burning Velocities of Mixtures of Hydrogen, Carbon Monoxide, and Methane With Air
,”
Combust. Flame
0010-2180,
3
, pp.
511
524
.
4.
Günther
,
R.
, and
Janisch
,
G.
, 1971, “
Messwerte Der Flammegeschwindigkeit von Gasen Und Gasmischen
,”
Chem.-Ing.-Tech.
0009-286X,
43
, pp.
975
978
.
5.
Strauss
,
W. A.
, and
Edse
,
R.
, 1958, “
Burning Velocity Measurements by the Constant-Pressure Bomb Method
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
7
, pp.
377
385
.
6.
Yumlu
,
V. S.
, 1967, “
Prediction of Burning Velocities of Carbon Monoxide-Hydrogen-Air Flames
,”
Combust. Flame
0010-2180,
11
, pp.
190
194
.
7.
Vagelopoulos
,
C. M.
, and
Egolfopoulos
,
F. N.
, 1994, “
Laminar Flame Speeds and Extinction Strain Rates of Mixtures of Carbon Monoxide With Hydrogen, Methane, and Air
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
25
, pp.
1317
1323
.
8.
McLean
,
I. C.
,
Smith
,
D. B.
, and
Taylor
,
S. C.
, 1994, “
The Use of Carbon Monoxide/Hydrogen Burning Velocities to Examine the Rate of the CO+OH Reaction
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
25
, pp.
749
757
.
9.
Brown
,
M. J.
,
McLean
,
I. C.
,
Smith
,
D. B.
, and
Taylor
,
S. C.
, 1996, “
Markstein Lengths of CO∕H2/Air Flames, Using Expanding Spherical Flames
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
26
, pp.
875
881
.
10.
Hassan
,
M. I.
,
Aung
,
K. T.
, and
Faeth
,
G. M.
, 1996, “
Markstein Numbers and Unstretched Laminar Burning Velocities of Wet Carbon Monoxide Flames
,” 34th Aerospace Sciences Meeting and Exhibit,
Reno
,
NV
, Paper No. AIAA 96-0912.
11.
Hassan
,
M. I.
,
Aung
,
K. T.
, and
Faeth
,
G. M.
, 1997, “
Properties of Laminar Premixed CO∕H2/Air Flames at Various Pressures
,”
J. Propul. Power
0748-4658,
13
(
2
), pp.
239
245
.
12.
Sun
,
H. Y.
,
Yang
,
S. I.
,
Jomass
,
G.
, and
Law
,
C. K.
, 2006, “
High Pressure Laminar Flame Speeds and Kinetic Modeling of Carbon Monoxide/Hydrogen Combustion
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
439
446
.
13.
Davis
,
S. G.
,
Joshi
,
A. V.
,
Wang
,
H.
, and
Egolfopoulos
,
F. N.
, 2004, “
An Optimized Kinetic Model of H2∕CO Combustion
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
1283
1292
.
14.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
,
Chaos
,
M.
,
Dryer
,
F. L.
, and
Scire
,
J. J.
, Jr
, 2007. “
A Comprehensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion
,”
Int. J. Chem. Kinet.
0538-8066,
39
(
3
), pp.
109
136
.
15.
Natarajan
,
J.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
, 2007, “
Laminar Flame Speeds of H2∕CO Mixtures, Effect of CO2 Dilution, Preheat Temperature and Pressure
,”
Combust. Flame
0010-2180,
151
, pp.
104
119
.
16.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
, Jr.
,
Gardiner
,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, http://www.me.berkeley.edu/gri_mech/http://www.me.berkeley.edu/gri_mech/
17.
Wu
,
C. K.
, and
Law
,
C. K.
, 1984, “
On the Determination of Laminar Flame Speeds From Stretched Flames
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
20
, pp.
1941
1949
.
18.
Vagelopoulos
,
C. M.
,
Egolfopoulos
,
F. N.
, and
Law
,
C. K.
, 1994, “
Further Considerations on the Determination of Laminar Flame Speeds With the Counterflow Twin-Flame Technique
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
25
, pp.
1341
1347
.
19.
Egolfopoulos
,
F. N.
,
Zhang
,
H.
, and
Zhang
,
Z.
, 1997, “
Wall Effects on the Propagation and Extinction of Steady, Strained, Laminar Premixed Flames
,”
Combust. Flame
0010-2180,
109
, pp.
237
252
.
20.
Andac
,
M. G.
,
Egolfopoulos
,
F. N.
, and
Campbell
,
C. S.
, 2002, “
Premixed Flame Extinction by Inert Particles in Normal and Micro-Gravity
,”
Combust. Flame
0010-2180,
129
, pp.
179
191
.
21.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
, 2004, “
An Updated Comprehensive Kinetic Model of Hydrogen Combustion
Int. J. Chem. Kinet.
0538-8066,
36
, pp.
566
575
.
22.
Egolfopoulos
,
F. N.
, and
Law
,
C. K.
, 1990, “
An Experimental and Computational Study of the Burning Rates of Ultra-Lean to Moderately-Rich H2∕O2∕N2 Laminar Flames With Pressure Variation
Sym. (Int.) Combust., [Proc.]
0082-0784,
23
, pp.
333
340
.
23.
Kalitan
,
D. M.
, and
Peterson
,
E. L.
, 2005, “
Ignition and Oxidation of Lean CO∕H2 Fuel Blends in Air
,” 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,
Tucson, AZ
.
You do not currently have access to this content.