The study of dynamic whirl behavior of air bearings is fundamental for an adequate rotordynamic analysis and future validation of numerical predictions. This work shows the dynamic response of the air film on a three-lobe bearing under asynchronous whirl motion. One-dimensional multifrequency orbits are used to characterize the bearing rotordynamic coefficients. The test rig uses two magnetic bearing actuators to impose any given orbits to the journal. The dynamic forces are measured on the test bearing housing by three load cells. Journal whirling excitation is independent of the rotating speed, thus allowing asynchronous excitations. The multifrequency excitation is applied at each rotating speed up to 11,000rpm, allowing the asynchronous characterization of the air film. The experimental procedure requires two linearly independent excitation sets. Thus, vertical and horizontal one-dimensional multifrequency orbits are applied as perturbations. Results show the synchronous and asynchronous dynamic coefficients of the air bearing. Asynchronous experimental results are compared to numerical estimation of the bearing force coefficients through solution of the isotropic ideal gas journal bearing Reynolds equation. Numerical dynamic coefficients are obtained as the effective coefficient values of the bearing when subject to a given orbit. A full characterization of the asynchronous rotordynamics coefficients of the bearing is presented in three-dimensional maps.

1.
Heshmat
,
H.
,
Walton
,
J. F.
, and
Tomaszewski
,
M. J.
, 2005, “
Demonstration of a Turbojet Engine Using an Air Foil Bearing
,” ASME Paper No. GT-2005-68404.
2.
Walton
,
J.
,
Heshmat
,
H.
, and
Tomaszewski
,
M.
, 2004, “
Testing of a Small Turbocharger/Turbojet Sized Simulator Rotor
,” ASME Paper No. GT2004-53647.
3.
Heshmat
,
H.
,
Heshmat
,
C.
,
Valco
,
M. J.
,
Radil
,
K. C.
, and
Della Corte
,
C.
, 2005, “
Foil Bearings Make Oil-Free Turbocharger Possible
,” ASME Paper No. WTC2005-63724.
4.
Swanson
,
E.
, and
Heshmat
,
H.
, 2002, “
Oil-Free Foil Bearing as a Reliable, High Performance Backup Bearing for Active Magnetic Bearing
,” ASME Paper No. GT-2002-30291.
5.
Swanson
,
E.
,
Heshmat
,
H.
, and
Shin
,
J.
, 2002, “
The Role of High Performance Foil Bearing in an Advanced, Oil-Free, Integral Permanent Magnet Motor Driven, High-Speed Turbo Compressor Operating Above the First Bending Critical Speed
,” ASME Paper No. GT-2002-30579.
6.
Salehi
,
M.
,
Heshmat
,
H.
,
Walton
,
J.
, and
Tomaszewski
,
M.
, 2004, “
Operation of a Mesoscopic Gas Turbine Simulator at Speeds in Excess of 700.000rpm on Foil Bearing
,” ASME Paper No. GT2004-53870.
7.
Wilde
,
D. A.
, and
San Andrés
,
L.
, 2006, “
Comparison of Rotordynamic Analysis Predictions With the Test Response of Simple Gas Hybrid Bearings for Oil Free Turbomachinery
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
, pp.
634
643
.
8.
Agrawal
,
G. L.
, 1997, “
Foil Air/Gas Bearing Technology An Overview
,” ASME Paper No. 97-GT-347.
9.
Tiwari
,
R.
,
Lees
,
A.
, and
Friswell
,
M. I.
, 2004, “
Identification of Dynamic Bearing Parameters: A Review
,”
Shock Vib. Dig.
0583-1024,
36
(
2
), pp.
99
124
.
10.
Viktorov
,
V.
,
Belforte
,
G.
, and
Raparelli
,
T.
, 2005, “
Modelling and Identification of Gas Journal Bearings: Externally Pressurized Gas Bearing Results
,”
ASME J. Tribol.
0742-4787,
127
, pp.
548
556
.
11.
Faria
,
M. T.
, and
San Andrés
,
L.
, 2000, “
On the Numerical Modelling of High-Speed Hydrodynamic Gas Bearings
,”
Trans. ASME, J. Tribol.
0742-4787,
122
, pp.
124
130
.
12.
Heshmat
,
C.
,
Xu
,
D. S.
, and
Heshmat
,
H.
, 2000, “
Analysis of Gas Lubricated Foil Thrust Bearings Using Coupled Finite Element and Finite Difference Methods
,”
Trans. ASME, J. Tribol.
0742-4787,
122
, pp.
199
204
.
13.
Wilde
,
D. A.
, and
San Andrés
,
L.
, 2006, “
Experimental Response of Simple Gas Hybrid Bearings for Oil-Free Turbomachinery
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
, pp.
626
633
.
14.
Zhu
,
X.
, and
San Andrés
,
L.
, 2005, “
Experimental Response of a Rotor Supported on Rayleigh Step Gas Bearings
,” ASME Paper No. GT-2005-68296.
15.
Rubio
,
D.
, and
San Andrés
,
L.
, 2005, “
Structural Stiffness, Dry-Friction Coefficient and Equivalent Viscous Damping in a Bump-Type Foil Gas Bearing
,” ASME Paper No. GT-2005-68384.
16.
Rubio
,
D.
, and
San Andrés
,
L.
, 2006, “
Bump-Type Foil Bearing Structural Stiffness: Experimental and Predictions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
, pp.
653
660
.
17.
Swanson
,
E.
,
Walton
,
J.
, and
Heshmat
,
H.
, 2002, “
A Test Stand for Dynamic Characterization of Oil-Free Bearings for Modern Gas Turbine Engines
,” ASME Paper No. GT-2002-30005.
18.
Swanson
,
E.
,
Heshmat
,
H.
, and
Walton
,
J.
, 2002, “
Performance of a Foil-Magnetic Hybrid Bearing
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
375
382
.
19.
Bellabarba
,
E.
,
Diaz
,
S.
, and
Rastelli
,
V.
, 2005, “
A Test Rig for Air Bearings Rotordynamic Coefficients Measurement
,” ASME Paper No. GT-2005–30005.
20.
Ruiz
,
R.
,
Di Liscia
,
M.
,
Medina
,
L.
, and
Diaz
,
S.
, 2006, “
Experimental Measurement of a Three Lobe Air Bearing Rotordynamic Coefficients
,” ASME Paper No. GT-2006-91068.
21.
Ruiz
,
R.
,
Di Liscia
,
M.
, and
Diaz
,
S.
, 2006, “
Effect of the Orbit Shape on the Experimental Measurement of a Three Lobe Air Bearing
,”
Proceedings of the Seventh IFToMM Conference on Rotor Dynamics
,
Vienna, Austria
, Paper No. 284.
22.
San Andrés
,
L.
, and
Wilde
,
D. A.
, 2001, “
Finite Element Analysis of Gas Bearing for Oil-Free Turbomachinery
,”
European Journal of Computational Mechanics
,
10
(
6–7
), pp.
769
790
.
23.
Peng
,
Z. C.
, and
Khonsari
,
M. M.
, 2004, “
Hydrodynamic Analysis of Compliant Foil Bearings With Compressible Air Flow
,”
Trans. ASME, J. Tribol.
0742-4787,
126
, pp.
542
546
.
You do not currently have access to this content.