With the need to reduce carbon emissions such as CO2, hydrogen is being examined as potential “clean” fuel for the future. One potential strategy is lean premixed combustion, where the fuel and air are allowed to mix upstream before entering the combustor, which has been proven to curb NOx formation in natural gas fired engines. However, premixing hydrogen and air may increase the risk of autoignition before the combustor, resulting in serious engine damage. A flow reactor was set up to test the ignition delay time of hydrogen and air at temperatures relevant to gas turbine engine operations to determine maximum possible mixing times. The results were then compared to past experimental work and current computer simulations. The current study observed that ignition is very sensitive to the initial conditions. The ignition delay times follow the same general trend as seen in previous flow reactor studies: ignition within hundreds of milliseconds and relatively low activation energy. An experimentally derived correlation by Peschke and Spadaccini (1985, “Determination of Autoignition and Flame Speed Characteristics of Coal Gases Having Medium Heating Values,” Research Project No. 2357-1, Report No. AP-4291) appears to best predict the observed ignition delay times. Homogenous gas phase kinetics simulations do not appear to describe ignition well in these intermediate temperatures. Therefore, at the moment, only the current empirical correlations should be used in predicting ignition delay at engine conditions for use in the design of gas turbine premixers. Additionally, fairly large safety factors should still be considered for any design to reduce any chance of autoignition within the premixer.

1.
Conrad
,
W. E.
, and
Corrington
,
L. C.
, 1957, “
NACA Research Memorandum: Hydrogen for Turbojet and Ramjet Powered Flight
,” Report No. NACA RM E57D23.
2.
Sampath
,
P.
, and
Shum
,
F.
, 1985, “
Combustion Performance of Hydrogen in a Small Gas Turbine Combustor
,”
Int. J. Hydrogen Energy
0360-3199,
10
(
2
), pp.
829
837
.
3.
Dennis
,
R. A.
, and
Harp
,
R.
, 2007, “
Overview of the U.S. Department of Energy’s Office of Fossil Energy Advanced Turbine Program for Coal Based Power Systems With Carbon Capture
,” ASME Paper No. GT2007-28338.
4.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
, 2005, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
73
80
.
5.
Therkelsen
,
P. L.
,
Mauzey
,
J. L.
,
McDonell
,
V. G.
, and
Samuelsen
,
S.
, 2006, “
Evaluation of a Low Emission Gas Turbine Operated on Hydrogen
,”
ASME Turbo Expo
, Barcelona, Spain, May, Paper No. GT2006-90725.
6.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
, 2008, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
, p.
011506
.
7.
Dryer
,
F. L.
,
Chaos
,
M.
,
Zhao
,
Z.
,
Stein
,
J.
,
Alpert
,
J.
, and
Homer
,
C.
, 2007, “
Spontaneous Ignition of Pressurized Releases of Hydrogen and Natural Gas Into Air
,”
Combust. Sci. Technol.
0010-2202,
179
, pp.
663
694
.
8.
Petersen
,
E. L.
,
Kalitan
,
D. M.
,
Barrett
,
A. B.
,
Reehal
,
S. C.
,
Mertens
,
J. D.
,
Beerer
,
D. J.
,
Hack
,
R. L.
, and
McDonell
,
V. G.
, 2007, “
New Syngas/Air Ignition Data at Lower Temperature and Elevated Pressure and Comparison to Current Kinetics Models
,”
Combust. Flame
0010-2180,
149
(
1–2
), pp.
244
247
.
9.
Dryer
,
F. L.
, and
Chaos
,
M.
, 2008, “
Ignition of Syngas/Air and Hydrogen/Air Mixtures at Low Temperatures and High Pressures: Experimental Data Interpretation and Kinetic Modeling Implications
,”
Combust. Flame
0010-2180,
152
(
1–2
), pp.
293
299
.
10.
Kalitan
,
D. M.
,
Mertens
,
J. D.
,
Crofton
,
M. W.
, and
Petersen
,
E. L.
, 2007, “
Ignition and Oxidation of Lean Syngas CO∕H2 Fuel Blends in Air
,”
J. Propul. Power
0748-4658,
23
(
6
), pp.
1291
1304
.
11.
Slack
,
M. W.
, 1977, “
Rate Coefficient for H+O2+M=HO2+M Evaluated From Shock Tube Measurements of Induction Times
,”
Combust. Flame
0010-2180,
28
, pp.
241
249
.
12.
Bhaskaran
,
K. A.
,
Gupta
,
M. C.
, and
Just
,
Th.
, 1973, “
Shock Tube Study of the Effect of Unsymmetrical Dimethyl Hydrazine on the Ignition Characteristics of Hydrogen-Air Mixtures
,”
Combust. Flame
0010-2180,
21
, pp.
45
48
.
13.
Snyder
,
A. D.
,
Robertson
,
J.
,
Zanders
,
D. L.
, and
Skinner
,
G. B.
, 1965, “
Shock Tube Studies of Fuel/Air Ignition Characteristics
,” Report No. AFAPL-TR-65-93-1965.
14.
Craig
,
R. R.
, 1966, “
A Shock Tube Study of the Ignition Delay of Hydrogen-Air Mixtures Near the Second Explosion Limit
,” Report No. AFAPL-TR-66-74.
15.
Blumenthal
,
R.
,
Fieweger
,
K.
,
Komp
,
K. H.
, and
Adomeit
,
G.
, 1996, “
Gas Dynamic Features of Self Ignition of Non-Diluted Fuel/Air Mixtures at High Pressure
,”
Combust. Sci. Technol.
0010-2202,
113–114
, pp.
137
166
.
16.
Wang
,
B. L.
,
Olivier
,
H.
, and
Groenig
,
H.
, 2003, “
Ignition of Shock-Heated H2-Air-Stream Mixtures
,”
Combust. Flame
0010-2180,
133
, pp.
93
106
.
17.
Walker
,
D. W.
, 1969, “
An Investigation of the Shock Ignition Characteristics of Static and Flowing Combustible Mixtures
,” Ph.D. thesis, Ohio State University.
18.
Neer
,
M. E.
, 1972, “
An Investigation of Spontaneous Ignition of Flowing Hydrogen Air Mixtures
,” Ph.D. thesis, Ohio State University;
Neer
,
M. E.
, 1975, “
Autoignition of Flowing Hydrogen-Air Mixtures
,”
AIAA J.
0001-1452,
13
(
7
), pp.
924
928
.
19.
Peschke
,
W. T.
, and
Spadaccini
,
L. J.
, 1985, “
Determination of Autoignition and Flame Speed Characteristics of Coal Gases Having Medium Heating Values
,” Research Project No. 2357-1, Report No. AP-4291.
20.
Steinberg
,
M.
, and
Kaskan
,
W.
, 1955, “
Ignition of Combustible Mixtures by Shock Waves
,”
Fifth Symposium (International) on Combustion
, pp.
664
672
.
21.
Glassman
,
I.
, and
Sawyer
,
R.
, 1969, “
The Reaction of Hydrogen With Nitrogen Dioxide, Oxygen, and Mixtures of Nitric Oxide
,”
12th Symposium (International) on Combustion
, pp.
469
479
.
22.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
,
Chaos
,
M.
,
Dryer
,
F. L.
,
James
,
J.
, and
Scire
,
S.
, 2007, “
A Comprehensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion
,”
Int. J. Chem. Kinet.
0538-8066,
39
(
3
), pp.
109
136
.
23.
Gokulakrishnan
,
P.
,
Kazakov
,
A.
, and
Dryer
,
F.
, 2003, “
Comparison of Numerical and Experimental Kinetic Data for Flow Reactor Systems: Mixing Effects
,”
Third U.S. Joint Meeting of the Combustion Institute
.
24.
Chen
,
J.
,
Jermakian
,
V.
,
McDonell
,
V.
, and
Samuelsen
,
S.
, 2003, “
Correlation of Ignition Delay With Fuel Composition and State for Application to Gas Turbine Combustion
,” AGTSR Subcontract 00-01-SR084CS under DOE NETL Contract No. DE-FC21-92MC29061,
University of California
, Irvine Combustion Laboratory, Final Report (http://www.clemson.edu/scies/utsr/SR084.htmhttp://www.clemson.edu/scies/utsr/SR084.htm).
25.
Beerer
,
D. J.
,
Greene
,
M. U.
,
McDonell
,
V. G.
, and
Samuelsen
,
G. S.
, 2006, “
Correlation of Ignition Delay With IGCC and Natural Gas Fuels
,”
South Carolina Institute for Energy Studies
, Contract No. 03-01-SR112, Final Report. (http://www.clemson.edu/scies/utsr/SR112.htmhttp://www.clemson.edu/scies/utsr/SR112.htm).
26.
Lefebvre
,
A. H.
,
Freeman
,
W.
, and
Cowell
,
L.
, 1986, “
Spontaneous Ignition Delay Characteristics of Hydrocarbon Fuel/Air Mixtures
,” NASA Contractor Report No. 175064.
27.
Gokulakrishnan
,
P.
,
Gaines
,
G.
,
Currano
,
J.
,
Klassen
,
M. S.
, and
Roby
,
R. J.
, 2007, “
Experimental and Kinetic Modeling of Kerosene-Type Fuels at Gas Turbine Operating Conditions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
655
663
.
28.
Sims
,
G.-J.
,
Clague
,
A. R.
,
Copplestone
,
R. W.
,
Menzies
,
K. R.
, and
MacQuisten
,
M. A.
, 2005, “
The Measurement and Prediction of Gaseous Hydrocarbon Fuel Auto-Ignition Delay Time at Realistic Gas Turbine Operating Conditions
,” ASME Paper No. GT-2005-68736.
29.
Kee
,
R. J.
,
Rupley
,
F. M.
,
Miller
,
J. A.
,
Coltrin
,
M. E.
,
Grcar
,
J. F.
,
Meeks
,
E.
,
Moffat
,
H. K.
,
Lutz
,
A. E.
,
Dixon-Lewis
,
G.
,
Smooke
,
M. D.
,
Warnatz
,
J.
,
Evans
,
G. H.
,
Larson
,
R. S.
,
Mitchell
,
R. E.
,
Petzold
,
L. R.
,
Reynolds
,
W. C.
,
Caracotsios
,
M.
,
Stewart
,
W. E.
,
Glarborg
,
P.
,
Wang
,
C.
, and
Adigun
,
O.
, 2007, CHEMKIN Collection, Release 4.0,
Reaction Design, Inc.
, San Diego, CA.
30.
O’Conaire
,
M.
,
Curran
,
H.
,
Simmie
,
J.
,
Pitz
,
W.
, and
Westbrook
,
C.
, 2004, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
0538-8066,
36
(
11
), pp.
603
622
.
31.
Ströhle
,
J.
, and
Myhvold
,
T.
, 2007, “
An Evaluation of Detailed Reaction Mechanisms for Hydrogen Combustion Under Gas Turbine Conditions
,”
Int. J. Hydrogen Energy
0360-3199,
32
, pp.
125
135
.
32.
Yetter
,
R. A.
,
Dryer
,
F. L.
, and
Golden
,
D. M.
, 1992,
Major Research Topics in Combustion
,
M. Y.
Yussaini
,
A.
Kumar
, and
R. G.
Voigt
, eds.,
Springer
,
New York
, p.
309
.
33.
Yetter
,
R. A.
,
Rabitz
,
H.
, and
Hedges
,
R. M.
, 1991, “
A Combined Stability-Sensitivity Analysis of Weak and Strong Reactions of Hydrogen/Oxygen Mixtures
,”
Int. J. Chem. Kinet.
0538-8066,
23
, pp.
251
278
.
34.
Sabia
,
P.
,
Schiesswohl
,
E.
,
de Joannon
,
M. R.
, and
Cavaliere
,
A.
, 2006, “
Numerical Analysis of Hydrogen Mild Combustion
,”
Turk. J. Eng. Environ. Sci.
1300-0160,
30
, pp.
127
134
.
35.
Voevodski
,
V. V.
, and
Soloukhin
,
R. I.
, 1965,
Tenth Symposium (International) on Combustion
,
The Combustion Institute
,
Pittsburgh
, pp.
279
283
.
36.
Meyer
,
J.
, and
Oppeneheim
,
A. K.
, 1971, “
On the Shock-Induced Ignition of Explosive Gases
,”
13th Symposium (International) on Combustion
,
The Combustion Institute
,
Pittsburgh
, p.
1153
.
37.
Li
,
S. C.
, and
Williams
,
F. A.
, 2002, “
Reaction Mechanism for Methane Ignition
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
471
480
.
You do not currently have access to this content.