To decrease NOx emissions from combustion systems, lean premixed combustion is used. A disadvantage is the higher sensitivity to combustion instabilities, leading to increased sound pressure levels in the combustor and resulting in an increased excitation of the surrounding structure: the liner. This causes fatigue, which limits the lifetime of the combustor. This paper presents a joint experimental and numerical investigation of this acoustoelastic interaction problem for frequencies up to 1kHz. To study this problem experimentally, a test setup has been built consisting of a single burner, 500kW, 5bar combustion system. The thin structure (liner) is contained in a thick pressure vessel with optical access for a traversing laser vibrometer system to measure the vibration levels of the liner. The acoustic excitation of the liner is measured using pressure sensors measuring the acoustic pressures inside the combustion chamber. For the numerical model, the finite element method with full coupling between structural vibration and acoustics is used. The flame is modeled as an acoustic volume source corresponding to a heat release rate that is frequency independent. The temperature distribution is taken from a Reynolds averaged Navier Stokes (RaNS) computational fluid dynamics (CFD) simulation. Results show very good agreement between predicted and measured acoustic pressure levels. The predicted and measured vibration levels also match fairly well.

1.
Lieuwen
,
T. C.
, and
Yang
,
V.
, eds., 2005,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
2.
Lieuwen
,
T.
, 2003, “
Modeling of Premixed Combustion-Acoustic Wave Interactions: A Review
,”
J. Propul. Power
0748-4658,
19
(
5
), pp.
765
781
.
3.
Fahy
,
F.
, 1985,
Sound and Structural Vibration: Radiation, Transmission, and Response
,
Academic
,
London
.
4.
Junger
,
M. C.
, and
Feit
,
D.
, 1972,
Sound, Structures, and Their Interaction
,
MIT
,
Cambridge, MA
.
5.
Cook
,
R. D.
,
Malkus
,
D. S.
, and
Plesha
,
M. E.
, 2002,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
New York
.
6.
Hansen
,
C. H.
, and
Snyder
,
S. D.
, 1997,
Active Control of Noise and Vibration
,
E&FN Spon
,
London
.
7.
2004, ANSYS HTML Online Documentation, ANSYS 8.1, Ansys Inc.
8.
Huls
,
R. A.
,
van Kampen
,
J. F.
,
Kok
,
J. B. W.
, and
de Boer
,
A.
, 2003, “
Fluid Structure Interaction to Predict Liner Vibrations in an Industrial Combustion System
,”
Proceedings of the Tenth International Congress on Sound and Vibration
,
Stockholm, Sweden
.
9.
Huls
,
R. A.
,
Kok
,
J. B. W.
, and
de Boer
,
A.
, 2003, “
Vibration of the Liner in an Industrial Combustion System Due to an Acoustic Field
,”
Proceedings of the International Forum on Aeroelasticity and Structural Dynamics
,
Amsterdam, The Netherlands
.
10.
Huls
,
R. A.
, 2006, “
Acousto-Elastic Interaction in Combustion Chambers
,” Ph.D. thesis, University of Twente, The Netherlands.
11.
Nowak
,
D.
,
Bellucci
,
V.
,
Cerny
,
J.
, and
Toqan
,
M.
, 2004, “
Numerical Modeling of Thermoacoustic Oscillations in a Gas Turbine Combustion Chamber
,”
Proceedings of the 11th International Congress on Sound and Vibration
,
St. Petersburg, Russia
.
12.
Fannin
,
C. A.
, 2000, “
Linear Modeling and Analysis of Thermoacoustic Instabilities in a Gas Turbine Combustor
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
13.
LMS SYSNOISE, http://www.lmsintl.com/SYSNOISEhttp://www.lmsintl.com/SYSNOISE, LMS International, Researchpark Z1, Interleuvenlaan 68, 3001 Leuven, Belgium.
14.
Pankiewitz
,
C.
, and
Sattelmayer
,
T.
, 2003, “
Time Domain Simulation of Combustion Instabilities in Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
(
3
), pp.
677
685
.
15.
COMSOL FEMLAB, http://www.comsol.comhttp://www.comsol.com, COMSOL AB, Tegnérgatan, 23, SE-111 40, Stockholm, Sweden.
16.
Huls
,
R. A.
,
de Boer
,
A.
, and
Kok
,
J. B. W.
, 2004, “
A Transfer Function Approach to Structural Vibrations Induced by Thermoacoustic Sources
,”
Proceedings of the 11th International Congress on Sound and Vibration
,
St. Petersburg
.
17.
Huls
,
R. A.
,
Sengissen
,
A. X.
,
van der Hoogt
,
P. J. M.
,
Kok
,
J. B. W.
,
Poinsot
,
T.
, and
de Boer
,
A.
, 2007, “
Vibration Prediction in Combustion Chambers by Coupling Finite Elements and Large Eddy Simulations
,”
J. Sound Vib.
0022-460X,
304
(
1–2
), pp.
224
229
.
18.
Dowling
,
A. P.
, 2003, “
Singing Flames—The Coupling of Acoustics and Combustion
,”
Proceedings of the Tenth International Congress on Sound and Vibration
,
Stockholm, Sweden
.
19.
van Kampen
,
J. F.
, 2006, “
Acoustic Pressure Oscillations Induced by Confined Turbulent Premixed Natural Gas Flames
,” Ph.D. thesis, University of Twente, The Netherlands.
20.
Hardalupas
,
Y.
, and
Orain
,
M.
, 2004, “
Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission From a Flame
,”
Combust. Flame
0010-2180,
139
, pp.
188
207
.
21.
Bies
,
D. A.
, and
Hansen
,
C. H.
, 1996,
Engineering Noise Control, Theory and Practice
, 2nd ed.,
E&FN Spon
,
London
.
22.
Flemming
,
F.
,
Nauert
,
A.
,
Sadiki
,
A.
,
Janicka
,
J.
,
Brick
,
H.
,
Piscoya
,
R.
,
Ochmann
,
M.
, and
Koeltzsch
,
P.
, 2005, “
A Hybrid Approach for the Evaluation of the Radiated Noise From a Turbulent Non-Premixed Jet Flame Based on Large Eddy Simulation and Equivalent Source & Boundary Element Methods
,”
Proceedings of the 12th International Congress on Sound and Vibration
,
Lisbon, Portugal
.
23.
Rajaram
,
R.
, and
Lieuwen
,
T.
, 2002, “
Parametric Studies of Acoustic Radiation From Turbulent Flames
,” Paper No. AIAA-2002-3864.
24.
Rajaram
,
R.
, and
Lieuwen
,
T.
, 2004, “
Effect of Approach Flow Turbulence Characteristics on Sound Generation from Premixed Flames
,” Paper No. AIAA-2004-0461.
25.
Haynes International, 2005, Hastelloy X®, Haynes International.
26.
Haynes International, 2005, Haynes® HR-120™, Haynes International.
27.
Zinkle
,
S. J.
,
Robertson
,
J. P.
, and
Klueh
,
R. L.
, 1998, “
Thermophysical and Mechanical Properties of Fe-(8-9)%Cr Reduced Activation Steels (4/25/98 Draft)
,” Technical Report, Oak Ridge National Laboratory.
28.
Tinga
,
T.
,
van Kampen
,
J. F.
,
de Jager
,
B.
, and
Kok
,
J. B. W.
, 2007, “
Gas Turbine Combustor Liner Life Assessment Using a Combined Fluid/Structural Approach
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
69
79
.
29.
Lefebvre
,
A. H.
, 1999,
Gas Turbine Combustion
, 2nd ed.,
Taylor & Francis
,
London
.
30.
Sengissen
,
A. X.
,
van Kampen
,
J. F.
,
Huls
,
R. A.
,
Stoffels
,
G. G. M.
,
Kok
,
J. B. W.
, and
Poinsot
,
T.
, 2007, “
LES and Experimental Studies of Cold and Reacting Flow in a Swirled Partially Premixed Burner With and Without Fuel Modulation
,”
Combust. Flame
0010-2180,
150
(
1–2
), pp.
40
53
.
31.
Huls
,
R. A.
,
Kok
,
J. B. W.
, and
de Boer
,
A.
, 2003, “
Vibration of the Liner in an Industrial Combustion System Due to an Acoustic Field
,”
Proceedings of the International Forum on Aeroelasticity and Structural Dynamics
,
Amsterdam, The Netherlands
.
32.
Lavrentjev
,
J.
,
Abom
,
M.
, and
Bodén
,
H.
, 1995, “
A Measurement Method for Determining the Source Data of Acoustic Two-Port Sources
,”
J. Sound Vib.
0022-460X,
183
(
3
), pp.
517
531
.
You do not currently have access to this content.