The oxidation of methane-based fuels was studied experimentally in a fused-silica jet-stirred reactor (JSR) operating at 110atm, over the temperature range of 9001450K, from fuel-lean to fuel-rich conditions. Similar experiments were performed in the presence of carbon dioxide or syngas (COH2). A previously proposed kinetic reaction mechanism updated for modeling the oxidation of hydrogen, CO, methane, methanol, formaldehyde, and natural gas over a wide range of conditions including JSR, flame, shock tube, and plug flow reactor was used. A detailed chemical kinetic modeling of the present experiments was performed yielding a good agreement between the modeling, the present data and literature burning velocities, and ignition data. Reaction path analyses were used to delineate the important reactions influencing the kinetic of oxidation of the fuels in the presence of variable amounts of CO2. The kinetic reaction scheme proposed helps understand the effect of the additives on the oxidation of methane.

1.
Lückerath
,
R.
,
Meier
,
W.
, and
Aigner
,
M.
, 2007, “
FLOX® Combustion at High Pressure With Different Fuel Compositions
,” ASME Paper No. GT2007-27337.
2.
Wu
,
J.
,
Brown
,
P.
,
Diakunchak
,
I.
,
Gulati
,
A.
,
Lenze
,
M.
, and
Koestlin
,
B.
, 2007, “
Advanced Gas Turbine Combustion System Development for High Hydrogen Fuels
,” ASME Paper No. GT2007-28337.
3.
Dagaut
,
P.
, and
Nicolle
,
A.
, 2005, “
Experimental and Detailed Kinetic Modeling Study of the Effect of Exhaust Gas on Fuel Combustion: Mutual Sensitization of the Oxidation of Nitric Oxide and Methane Over Extended Temperature and Pressure Ranges
,”
Combust. Flame
0010-2180,
140
, pp.
161
171
.
4.
Dagaut
,
P.
,
Mathieu
,
O.
,
Nicolle
,
A.
, and
Dayma
,
G.
, 2005, “
Experimental and Detailed Kinetic Modeling Study of the Mutual Sensitization of the Oxidation of Nitric Oxide, Ethane and Ethylene
,”
Combust. Sci. Technol.
0010-2202,
177
, pp.
1767
1791
.
5.
Nicolle
,
A.
, and
Dagaut
,
P.
, 2006, “
Occurrence of NO-Reburning in MILD Combustion Evidenced via Chemical Kinetic Modeling
,”
Fuel
0016-2361,
85
, pp.
2469
2478
.
6.
Le Cong
,
T.
, 2007, Doctoral thesis, Orleans, France, in French.
7.
Dagaut
,
P.
, 2002, “
On the Kinetics of Hydrocarbons Oxidation From Natural Gas to Kerosene and Diesel Fuel
,”
Phys. Chem. Chem. Phys.
1463-9076,
4
, pp.
2079
2094
.
8.
Tan
,
Y.
,
Dagaut
,
P.
,
Cathonnet
,
M.
, and
Boettner
,
J.-C.
, 1994, “
Acetylene Oxidation in a JSR From 1to10atm and Comprehensive Kinetic Modeling
,”
Combust. Sci. Technol.
0010-2202,
102
, pp.
21
55
.
9.
Kee
,
R. J.
,
Grcar
,
J. F.
,
Smooke
,
M. D.
, and
Miller
,
J. A.
, 1985, “
Premix: A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flame
,” Sandia Report No. SAND85-8240.
10.
Lutz
,
A. E.
,
Kee
,
R. J.
, and
Miller
,
J. A.
, 1988, “
Senkin: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics With Sensitivity Analysis
,” Sandia Report No. SAND87-8248.
11.
Glarborg
,
P.
,
Kee
,
R. J.
,
Grcar
,
J. F.
, and
Miller
,
J. A.
, 1986, “
PSR: A FORTRAN Program for Modeling Well-Stirred Reactors
,” Sandia Report No. SAND86-8209.
12.
Takahashi
,
F.
,
Mizomoto
,
M.
, and
Ikai
,
S.
, 1983. “
Laminar Burning Velocities of Hydrogen/Oxygen/Inert Gas Mixtures
,”
Alternative Energy Sources III
,
T. Nejat
Veziroglu
, ed., Nuclear Energy/Synthetic Fuels, Vol. 5, pp.
447
457
,
McGraw-Hill
,
New York
.
13.
Tse
,
S. D.
,
Zhu
,
D. L.
, and
Law
,
C. K.
, 2000, “
Morphology and Burning Rates of Expanding Spherical Flames in H2/O2/Inert Mixtures Up to 60 Atmospheres
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
1793
1800
.
14.
Dowdy
,
D. R.
,
Smith
,
D. B.
,
Taylor
,
S. C.
, and
Williams
,
A.
, 1990, “
The Use of the Expanding Spherical Flames to Determine Burning Velocities and Stretch Effects in Hydrogen/Air Mixtures
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
23
, pp.
325
332
.
15.
Aung
,
K. T.
,
Hassan
,
M. I.
, and
Faeth
,
G. M.
, 1997, “
Flame Stretch Interactions of Laminar Premixed Hydrogen/Air Flames at Normal Temperature and Pressure
,”
Combust. Flame
0010-2180,
109
, pp.
1
24
.
16.
Iijima
,
T.
, and
Takeno
,
T.
, 1986, “
Effects of Temperature and Pressure on Burning Velocity
,”
Combust. Flame
0010-2180,
65
, pp.
35
43
.
17.
Koroll
,
G. W.
,
Kumar
,
R. K.
, and
Bowles
,
E. M.
, 1993, “
Burning Velocities of Hydrogen-Air Mixtures
,”
Combust. Flame
0010-2180,
94
, pp.
330
340
.
18.
Qiao
,
L.
,
Kim
,
C. H.
, and
Faeth
,
G. M.
, 2005, “
Suppression Effects of Diluents on Laminar Premixed Hydrogen/Oxygen/Nitrogen Flames
,”
Combust. Flame
0010-2180,
143
, pp.
79
96
.
19.
Mueller
,
M. A.
,
Kim
,
T. J.
,
Yetter
,
R. A.
, and
Dryer
,
F. L.
, 1999, “
Flow Reactor Studies and Kinetic Modeling of the H2∕O2 Reaction
,”
Int. J. Chem. Kinet.
0538-8066,
31
, pp.
113
125
.
20.
McLean
,
I. C.
,
Smith
,
D. B.
, and
Taylor
,
S. C.
, 1994, “
The Use of Carbon Monoxide/Hydrogen Burning Velocities to Examine the Rate of the CO+OH Reaction
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
25
, pp.
749
757
.
21.
Sun
,
H.
,
Yang
,
S. I.
,
Jomaas
,
G.
, and
Law
,
C. K.
, 2007, “
High-Pressure Laminar Flame Speeds and Kinetic Modeling of Carbon Monoxide/Hydrogen Combustion
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
439
446
.
22.
Burke
,
M. P.
,
Xin
,
X.
,
Ju
,
Y.
, and
Dryer
,
F. L.
, 2007, “
Measurements of Hydrogen Syngas Flame Speeds at Elevated Pressures
,”
Proceedings of the Fifth US Combustion Meeting
,
San Diego, CA
, Mar. 25–28, Paper No. A16.
23.
Natarajan
,
J.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
, 2007, “
Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure
,”
Combust. Flame
0010-2180,
151
, pp.
104
119
.
24.
Kalitan
,
D. M.
, and
Petersen
,
E. L.
, 2005, “
Ignition and Oxidation of Lean CO∕H2 Fuel Blends in Air
,” AIAA Paper No. 2005-3767.
25.
Yetter
,
R. A.
,
Dryer
,
F. L.
, and
Rabitz
,
H.
, 1991, “
A Comprehensive Reaction-Mechanism for Carbon-Monoxide/Hydrogen/Oxygen Kinetics
,”
Combust. Sci. Technol.
0010-2202,
79
, pp.
97
128
.
26.
Dagaut
,
P.
, and
Lecomte
,
F.
, 2003, “
Experimental and Kinetic Modeling Study of the Reduction of NO by Hydrocarbons and Interactions With SO2 in a JSR at 1atm
,”
Fuel
0016-2361,
82
, pp.
1033
1040
.
27.
Sivaramakrishnan
,
R.
,
Comandini
,
A.
,
Tranter
,
R. S.
,
Brezinsky
,
K.
,
Davis
,
S. G.
, and
Wang
,
H.
, 2007, “
Combustion of CO∕H2 Mixtures at Elevated Pressures
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
429
437
.
28.
Vagelopoulos
,
C. M.
,
Egolfopoulos
,
F. N.
, and
Law
,
C. K.
, 1994, “
Further Considerations on the Determination of Laminar Flame Speeds With the Counterflow Twin-Flame Technique
,”
Proc. Combust. Inst.
1540-7489,
25
, pp.
1341
1347
.
29.
Aung
,
K. T.
,
Tseng
,
L. K.
,
Ismail
,
M. A.
, and
Faeth
,
G. M.
, 1995, “
Response to Comment by S.C. Taylor, and D.B. Smith on ‘Laminar Burning Velocities and Markstein Numbers of Hydrocarbon/Air Flames’
,”
Combust. Flame
0010-2180,
102
, pp.
526
530
.
30.
Egolfopolous
,
F. N.
,
Cho
,
P.
, and
Law
,
C. K.
, 1989, “
Laminar Flame Speeds of Methane-Air Mixtures Under Reduced and Elevated Pressures
,”
Combust. Flame
0010-2180,
76
, pp.
375
391
.
31.
Petersen
,
E. L.
,
Schuyler
,
J. M.
,
Smith
,
S. D.
,
de Vries
,
J.
,
Amadio
,
A.
, and
Crofton
,
M. W.
, 2005, “
Ignition of Lean Methane-Based Fuel Blends at Gas Turbine Pressures
,” ASME Paper No. GT2005-68517.
32.
Petersen
,
E. L.
,
Rohrig
,
M.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
, and
Bowman
,
C. T.
, 1996, “
High-Pressure Methane Oxidation Behind Reflected Shock Waves
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
26
, pp.
799
806
.
33.
Dyakov
,
I. V.
,
Konnov
,
A. A.
, and
De Ruyck
,
J.
, 2004, “
Sampling Measurements of Nitric Oxide in Methane—Oxygen—Carbon Dioxide Flames With Ammonia Admixture
,”
Khim. Fiz.
0207-401X,
23
(
8
), pp.
19
24
.
34.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, 1999, http//www.berkeley.edu/gri-mech/http//www.berkeley.edu/gri-mech/
35.
Dagaut
,
P.
, and
Nicolle
,
A.
, 2005, “
Experimental and Detailed Kinetic Modeling Study of Hydrogen-Enriched Natural Gas Blend Oxidation Over Extended Temperature and Equivalence Ratio Ranges
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
2631
2638
.
36.
Dagaut
,
P.
, and
Dayma
,
G.
, 2006, “
Hydrogen-Enriched Natural Gas Blend Oxidation Under High Pressure Conditions: Experimental and Detailed Chemical Kinetic Modeling
,”
Int. J. Hydrogen Energy
0360-3199,
31
, pp.
505
515
.
37.
Yu
,
G.
,
Law
,
C. K.
, and
Wu
,
C. K.
, 1986, “
Laminar Flame Speeds of Hydrogen+Air Mixtures With Hydrogen Addition
,”
Combust. Flame
0010-2180,
63
, pp.
339
347
.
38.
Halter
,
F.
,
Chauveau
,
C.
,
Djebaïli-Chaumeix
,
N.
, and
Gökalp
,
I.
, 2005, “
Characterization of the Effects of Pressure and Hydrogen Concentration on Laminar Burning Velocities of Methane-Hydrogen-Air Mixtures
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
201
208
.
39.
Law
,
C. K.
, and
Kwon
,
O. C.
, 2004, “
Effects of Hydrocarbon Substitution on Atmospheric Hydrogen-Air Flame Propagation
,”
Int. J. Hydrogen Energy
0360-3199,
29
, pp.
867
879
.
40.
Petersen
,
E. L.
,
Davidson
,
D. F.
,
Rohrig
,
M.
, and
Hanson
,
R. K.
, 1995, “
Shock-Induced Ignition of High-Pressure H2-O2-Ar and CH4-O2-Ar Mixtures
,” AIAA Paper No. 95-3113.
41.
Vandooren
,
J.
, and
Bian
,
J.
, 1990, “
Validation of H2/O2 Reaction Mechanism by Comparison With the Experimental Structure of a Rich Hydrogen-Oxygen Flame
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
23
, pp.
341
346
.
42.
Koroll
,
G. W.
, and
Mulpuru
,
S. R.
, 1986, “
The Effect of Dilution With Steam on the Burning Velocity and Structure of Premixed Hydrogen Flames
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
21
, pp.
1811
1819
.
43.
Vandooren
,
J.
,
Peeters
,
J.
, and
Van Tiggelen
,
P. J.
, 1975, “
Rate Constant of the Elementary Reaction of Carbon Monoxide With Hydroxyl Radical
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
15
, pp.
745
753
.
44.
Lewis
,
B.
, and
von Elbe
,
G.
, 1987,
Combustion, Flames and Explosions of Gases
, 3rd ed.,
Academic
,
Orlando, FL
.
45.
Kim
,
T. J.
,
Yetter
,
R. A.
, and
Dryer
,
F. L.
, 1994, “
New Results on Moist CO Oxidation: High Pressure, High Temperature Experiments and Comprehensive Kinetic Modeling
,”
Proc. Combust. Inst.
1540-7489,
25
, pp.
759
766
.
46.
Hennessy
,
R. J.
,
Robinson
,
C.
, and
Smith
,
D. B.
, 1986, “
A Comparative Study of Methane and Ethane Flame Chemistry by Experimental and Detailed Modelling
,”
Sym. (Int.) Combust., [Proc.]
0082-0784,
21
, pp.
761
772
.
47.
Bernstein
,
J. S.
,
Fein
,
A.
,
Choi
,
J. B.
,
Cool
,
T. A.
,
Sausa
,
R. C.
,
Howard
,
S. L.
,
Locke
,
R. J.
, and
Miziolek
,
A. W.
, 1993, “
Laser-Based Flame Species Profile Measurements—A Comparison With Flame Model Predictions
,”
Combust. Flame
0010-2180,
92
, pp.
85
105
.
48.
Bechtel
,
J. H.
,
Blint
,
R. J.
,
Dasch
,
C. J.
, and
Weinberger
,
D. A.
, 1981, “
Atmospheric Pressure Premixed Hydrocarbon-Air Flames: Theory and Experiment
,”
Combust. Flame
0010-2180,
42
, pp.
197
218
.
49.
Konnov
,
A. A.
,
Zhu
,
J. N.
,
Bromly
,
J. H.
, and
Zhang
,
D.-K.
, 2004, “
Noncatalytic Partial Oxidation of Methane Into Syngas Over a Wide Temperature Range
,”
Combust. Sci. Technol.
0010-2202,
176
, pp.
1093
1116
.
You do not currently have access to this content.