Underplatform friction dampers are possible solutions for minimizing vibrations of rotating turbine blades. Solid dampers, characterized by their compact dimensions, are frequently used in real applications and often appear in patents in different forms. A different type of the friction damper is a thin-walled structure, which has larger dimensions and smaller contact stresses on a wider contact area in relation to the solid damper. The damping performance of a thin-walled damper, mounted under the platforms of two rotating, freestanding high pressure turbine blades, is investigated numerically and experimentally in this paper. The tangential and normal contact stiffness that are crucial parameters in optimal design of any friction damper are determined from three-dimensional finite element computations of the contact behavior of the damper on the platform including friction and centrifugal effects. The computed contact stiffness values are applied to nonlinear dynamic simulations of the analyzed blades coupled by the friction damper of a specified mass. These numerical analyses are performed in the modal frequency domain, which is based on the harmonic balance method for the complex linearization of friction forces. The numerical dynamic results are in good agreement with the measured data of the real mistuned system. In the analyzed excitation range, the numerical performance curve of the thin-walled damper is obtained within the scatter band of the experimental results. For the known friction coefficients and available finite element and harmonic balance tools, the described numerical process confirms its usability in the design process of turbine blades with underplatform dampers.

1.
Griffin
,
J. H.
, 1980, “
Friction Damping of Resonant Stresses in Gas Turbine Airfoils
,”
ASME J. Eng. Power
0022-0825,
102
(
2
), pp.
329
333
.
2.
Cameron
,
T. M.
,
Griffin
,
J. H.
,
Kielb
,
R. E.
, and
Hossac
,
T. M.
, 1987, “
An Integrated Approach for Friction Damper Design
,”
ASME Booklet DE
, Vol.
5
, pp.
205
211
.
3.
Wang
,
J. H.
, and
Yau
,
H. Y.
, 1990, “
Design of Shroud Interface-Angle to Minimize the Forced Vibration of Blades
,”
ASME Gas Turbine and Aeroengine Congress and Exhibition
, Brussels, ASME Paper No. 90-GT-247.
4.
Wang
,
J. H.
, and
Yau
,
H. Y.
, 1990, “
Design of Blade-Shroud to Minimize the Sensitivity of Response to Preload Mistuning
,”
Proceedings of the Third International Conference on Rotordynamics
,
Lyon, France
, Sept. 9–12, pp.
341
350
.
5.
Wang
,
J. H.
, and
Shieh
,
W. L.
, 1991, “
The Influence of Variable Friction Coefficient on the Dynamic Behaviours of Blade With Friction Damper
,”
J. Sound Vib.
0022-460X,
149
, pp.
137
145
.
6.
Wang
,
J. H.
, and
Chen
,
W. K.
, 1993, “
Investigation of a Blade With a Friction Damper by HBM
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
115
, pp.
294
299
.
7.
Yang
,
B. D.
, and
Menq
,
C.-H.
, 1998, “
Characterization of Contact Kinematics and Application to the Design of Wedge Dampers in Turbomachinery Blading, Part I: Stick-Slip Contact Kinematics
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
120
(
2
), pp.
410
417
.
8.
Sextro
,
W.
,
Popp
,
K.
, and
Wolter
,
I.
, 1997, “
Improved Reliability of Bladed Disks due to Friction Dampers
,” ASME Paper No. 97-GT-189.
9.
Csaba
,
G.
, 1999, “
Modelling of a Microslip Friction Damper Subjected to Translation and Rotation
,” ASME Paper No. 99-GT-149.
10.
Sanliturk
,
K. Y.
,
Ewins
,
D. J.
, and
Stanbridge
,
A. B.
, 2001, “
Underplatform Dampers for Turbine Blades: Theoretical Modelling, Analysis and Comparison With Experimental Data
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
123
, pp.
919
929
.
11.
Petrov
,
E. P.
, and
Ewins
,
D. J.
, 2003, “
Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-harmonic Vibrations of Bladed Discs
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
364
371
.
12.
Petrov
,
E. P.
, 2005, “
Sensitivity Analysis of Nonlinear Forced Response for Bladed Discs With Friction Contact Interfaces
,” ASME Paper No. GT2005-68935.
13.
Goetting
,
F.
,
Sextro
,
W.
,
Panning
,
L.
, and
Popp
,
K.
, 2004, “
Systematic Mistuning of Bladed Disk Assemblies With Friction Contacts
,” ASME Paper No. GT2004-53310.
14.
Panning
,
L.
,
Popp
,
K.
,
Sextro
,
W.
,
Goetting
,
F.
,
Kayser
,
A.
, and
Wolter
,
I.
, 2004, “
Asymmetrical Underplatform Dampers in Gas Turbine Bladings: Theory and Application
,” ASME Paper No. GT2004-53316.
15.
Koh
,
K.-H.
,
Griffin
,
J. H.
,
Filippi
,
S.
, and
Akay
,
A.
, 2004, “
Characterization of Turbine Blade Friction Dampers
,” ASME Paper No. GT2004-53278.
16.
Mindlin
,
R. D.
, 1949, “
Compliance of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
0021-8936,
16
, pp.
259
268
.
17.
Balmer
,
B.
, 1992, “
Erhoehung der Daempfung von Turbinenschaufeln durch Reibelement (Damping Increase of Turbine Blades Through Friction Damper)
,” Fortschr.-Ber. VDI-Reihe 11, No. 197, VDI-Verlag GmbH, Duesseldorf, Germany.
18.
Sanliturk
,
K. Y.
,
Stanbridge
,
A. B.
, and
Ewins
,
D. J.
, 1995, “
Friction Dampers: Measurements, Modelling and Application to Blade Vibration Control
,”
Proceeding of Design Engineering Technology Conferences
, ASME Paper No. De-Vol. 84-2, Vol.
3
Pt. B, pp.
1377
1382
.
19.
Yang
,
B. D.
, and
Menq
,
C.-H.
, 1998, “
Characterization of Contact Kinematics and Application to the Design of Wedge Dampers in Turbomachinery Blading—Part I: Stick-Slip Contact Kinematics
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
120
(
2
), pp.
410
417
;
Yang
,
B. D.
, and
Menq
,
C.-H.
, 1998, “
Characterization of Contact Kinematics and Application to the Design of Wedge Dampers in Turbomachinery Blading—Part II: Prediction of Forced Response and Experimental Verification
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
120
(
2
), pp.
418
423
.
20.
Szwedowicz
,
J.
,
Kissel
,
M.
,
Ravindra
,
B.
, and
Keller
,
R.
, 2001, “
Estimation of Contact Stiffness and its Role in the Design of a Friction Damper
,” ASME Paper No. 2001-GT-0290.
21.
Stanbridge
,
A. B.
,
Sever
,
I. A.
, and
Ewins
,
D. J.
, 2002, “
Vibration Measurements in a Rotating Blisk Test Rig Using an LDV
,”
Fifth International Conference on Vibration Measurements by Laser Techniques
,
Ancona
, Jun. 18–21.
22.
Elliott
,
R.
,
Green
,
J. S.
, and
Seinturier
,
E.
, 2005, “
Aeroelastic Design of Turbine Blades—ADTurBII Overview
,”
Sixth European Conference on Turbomachinery Fluid Dynamics and Heat Transfer
,
Lille, France
, Mar. 7–11.
23.
Kielb
,
J. J.
, and
Abhari
,
R. S.
, 2003, “
Experimental Study of Aerodynamic and Structural Damping in a Full-Scale Rotating Turbine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
102
112
.
24.
Charleux
,
D.
,
Gibert
,
C.
,
Thouverez
,
F.
,
Lombard
,
J. P.
, and
Dupeux
,
J.
, 2005, “
Analysis of a Bladed Disk With Friction in Blade Attachments
,”
XXIII IMAC
,
Orlando, FL
, Jan. 27–30.
25.
Ewins
,
D. J.
, 2003,
Modal Testing: Theory, Practice and Application
,
Baldock: Research Studies Press
, ISBN 0863802184.
26.
Lalanne
,
C.
, 1999,
Vibrations et chocs mécaniques, Tome 1: Vibrations sinusoidales
,
Hermès
,
Paris
.
27.
Sinclair
,
G. B.
,
Comier
,
N. G.
,
Griffin
,
J. H.
, and
Meda
,
G.
, 1999, “
Contact Stresses in Dovetail Attachments: Finite Element Modelling
,” ASME Paper No. 99-GT-387.
28.
Goetting
,
F.
, 2002, “
Analyse des Schwingungsverhaltens von verstimmten Beschaufelungen mit Reibelementen (Analysis of Vibration Behaviour of Mistuned Bladed Discs With Friction Dampers)
,” Fortschr.-Ber. VDI-Reihe 11, No. 327, VDI-Verlag GmbH, Duesseldorf, Germany.
29.
Popp
,
K.
, 1994, “
Nichtlineare Schwingungen Mechanischer Strukturen mit Fuge-oder Kontakt-stellen (Non-Linear Vibration of Mechanical Structures with Grooves of Contacts)
,”
ZAMM
0044-2267,
74
, pp.
147
165
.
30.
Gaul
,
L.
, and
Nitsche
,
R.
, 2000, “
Dynamics of Structures With Joint Connections in Structural Dynamics—Part II: Current States and Future Directions
,”
D. J.
Ewins
and
D. J.
Inman
, eds.,
Research Studies Press Limited (RSP)
.
31.
Sextro
,
W.
, 2002, “
Dynamical Contact Problems With Friction: Models, Methods, Experiments and Applications
,”
Lecture Notes in Applied Mech.
, Vol.
3
,
Springer-Verlag
, Berlin.
32.
Feiner
,
D. M.
, and
Griffin
,
H. H.
, 2002, “
A Fundamental Model of Mistuning for a Single Family of Modes
,” ASME Paper No. GT-2002-30425.
You do not currently have access to this content.