A rapid compression machine was used to study the soot formation process under diesel enginelike conditions. The apparatus creates accurately controlled conditions at the end of compression (uniform mixture, temperature, and well-defined mixture composition) and, by decoupling chemistry with mixing, provides an unambiguous data interpretation for kinetics study. The soot evolution was studied by the line-of-sight absorption method (at 632.8nm), which measured the soot volume concentration evolution in the initial stage of soot growth before the optical path became opaque. For a rich butane mixture at fuel equivalence ratio of 3, the ignition delay showed a negative temperature dependence at intermediate temperatures. The soot volume fraction showed an initial exponential growth, with a growth rate depending on the compressed charge fuel concentration. A substantial amount of soot was formed after the soot cloud became opaque. By weighing the total soot particles after the experiment, only 10-15% of the soot mass was formed when the beam transmission was reduced to 5%. The final soot mass was 15-18% of the total carbon mass for compressed charge density of 250molm3 and temperature from 740to930K.

1.
U.S. Environmental Protection Agency
, 1966, “
EPA’s Proposal for the Particulate Matter Standard: Fact Sheet
.”
2.
Anon
, 1997, “
National Ambient Air Quality Standards for Particulate Matter; Final Rule
,” Federal Register,
62
, p.
38652
.
3.
Heywood
,
J. B.
, 1988,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
4.
Dec
,
J.
, 1997, “
A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging
,” SAE Paper No. 970873.
5.
Senda
,
J.
,
Choi
,
D.
,
Iwamuro
,
M.
,
Fujimoto
,
H.
, and
Asai
,
G.
, 2002, “
Experimental Analysis on Soot Formation Process in DI Diesel Combustion Chamber by Use of Optical Diagnostics
,” SAE Paper No. 2002-01-0893.
6.
Pungs
,
A.
,
Pischinger
,
S.
,
Backer
,
H.
, and
Lepperhoff
,
G.
, 2000, “
Analysis of the Particle Size Distribution in the Cylinder of a Common-Rail DI Diesel Engine During Combustion and Expansion
,” SAE Paper No. 2000-01-1999.
7.
Tree
,
D.
, and
Dec
,
J.
, 2001, “
Extinction Measurements of In-Cylinder Soot Deposition in a Heavy Duty DI Diesel Engine
,” SAE Paper No. 2001-01-1296.
8.
Song
,
K. H.
,
Lee
,
Y.
, and
Litziger
,
A.
, 2000, “
Effects of Emulsified Fuels on Soot Evolution in an Optically Accessible DI Diesel Engine
,” SAE Paper No. 2000-01-2794.
9.
Hentschel
,
W.
, and
Richter
,
J. U.
, “
Time Resolved Analysis of Soot Formation and Oxidation in a Direct-Injection Diesel Engine for Different EGR Rates by an Extinction Method
,” SAE Paper No. 952517, 1995.
10.
Wiartalla
,
A.
,
Backer
,
H.
, and
Durnholz
,
M.
, “
Influence of Injection System Parameters on Spray Development, Combustion and Soot Formation by Optical Measurement Techniques in a Model Combustion Chamber
,” SAE Paper No. 950233, 1995.
11.
Miysmoto
,
N.
,
Ogawa
,
H.
,
Goto
,
N.
, and
Sasaki
,
H.
, “
Analysis of Diesel Soot Formation Under Varied Ignition Lag With a Laser Light Extinction Method
,” SAE Paper No. 900640, 1990.
12.
Dec.
,
J.
, and
Espey
,
C.
, “
Ignition and Early Soot Formation in a DI Diesel Engine Using Multiple 2D Imaging Diagnostics
,” SAE Paper No. 950456, 1995.
13.
Kellerer
,
H.
,
Koch
,
R.
, and
Wittig
,
S.
, 2000, “
Measurements of the Growth and Coagulation of Soot Particles in a High-Pressure Shock Tube
,”
Combust. Flame
0010-2180,
120
, pp.
188
199
.
14.
Bauerle
,
S.
,
Karasevich
,
Y.
,
Slavov
,
S.
,
Tanke
,
D.
,
Tappe
,
M.
,
Thienel
,
T.
, and
Wagner
,
H. G.
, 1994, “
Soot Formation at Elevated Pressures and Carbon Concentrations in Hydrocarbon Pyrolysis
,”
25th Symposium (International) on Combustion
,
The Combustion Institute
,
Pittsburgh
, pp.
627
634
.
15.
Parker
,
T. E.
,
Foutter
,
R. R.
, and
Rawlins
,
W. T.
, 1990, “
Soot Initiation and Particle Growth in the Pyrolysis of Toluene at High Inert Gas Pressures
,”
AIP Conf. Proc.
0094-243X,
208
, pp.
481
486
.
16.
Griffiths
,
J. F.
,
Jiao
,
Q.
,
Kordylewski
,
W.
,
Schreiber
,
M.
,
Meyer
,
J.
, and
Knoche
,
K. F.
, 1993, “
Experimental and Numerical Studies of Ditertiary Butyl Peroxide Combustion at High Pressures in a Rapid Compression Machine
,”
Combust. Flame
0010-2180,
93
, pp.
303
315
.
17.
Carlier
,
M.
,
Corre
,
C.
,
Minetti
,
R.
,
Pauwels
,
J. F.
,
Ribaucour
,
M.
, and
Sochet
,
L. R.
, 1990, “
Autoignition of Butane: A Burner and a Rapid Compression Machine Study
,”
23 Symposium (International) on Combustion
,
The Combustion Institute
,
Pittsburgh
, pp.
1753
1758
.
18.
Park
,
P.
, and
Keck
,
J. C.
, 1990, “
Rapid Compression Machine Measurements of Ignition Delays for Primary Reference Fuels
,” SAE Paper No. 900027.
19.
Affleck
,
W. S.
, and
Thomas
,
A.
, 1968, “
An Opposed Piston Rapid Compression Machine for Preflame Reaction Studies
,”
Proc. Inst. Mech. Eng.
0020-3483,
183
, pp.
365
381
.
20.
Jones
,
A. R.
, 1999, “
Light Scattering for Particle Characteristics
,”
Prog. Energy Combust. Sci.
0360-1285,
25
, pp.
1
53
.
21.
Haynes
,
B. S.
, and
Wagner
,
H. G.
, 1981, “
Soot Formation
,”
Prog. Energy Combust. Sci.
0360-1285,
7
,
229
273
.
22.
Graham
,
S. C.
, 1976, “
The Collisional Growth of Soot Particles at High Temperatures
,”
16th Symposium (International) on Combustion
,
The Combustion Institute
,
Pittsburgh
, pp.
663
669
.
23.
Amann
,
C. A.
, and
Siegla
,
D. C.
, 1982, “
Diesel Particulates—What They Are and Why?
,”
Aerosol Sci. Technol.
0278-6826,
1
, pp.
73
101
.
24.
Chang
,
H.
, and
Charalampopoulos
,
T. T.
, 1990, “
Determination of the Wavelength Dependence of Refractive Indices of Flame Soot
,”
Proc. R. Soc. London, Ser. A
1364-5021,
430
, pp.
577
591
.
25.
Lee
,
S. C.
, and
Tien
,
C. L.
, 1981, “
Optical Constants of Soot in Hydrocarbon Flames
,”
18th Symposium (International) on Combustion
,
The Combustion Institute
,
Pittsburgh
, pp.
1159
1166
.
26.
Gaydon
,
A. G.
, 1974,
The Spectroscopy of Flames
,
2nd ed.
,
Chapman and Hall
,
London
.
27.
Dec
,
J.
, and
Espey
,
C.
, 1998, “
Chemiluminescence Imaging of Autoignition in a DI Diesel Engine
,” SAE Paper No. 982685.
28.
Wersborg
,
B. L.
,
Fox
,
L. K.
, and
Howard
,
J. B.
, 1975, “
Soot Concentration and Absorption Coefficient in a Low-Pressure Flame
,”
Combust. Flame
0010-2180,
24
, pp.
1
10
.
29.
Vaglieco
,
B. M.
,
Merola
,
S. S.
,
D’Anna
,
A.
, and
D’Alessio
,
A.
, 2002, “
Spectroscopic Analysis and Modeling of Particulate Formation in a Diesel Engine
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
73
, pp.
443
450
.
30.
D’Anna
,
A.
,
Violi
,
A.
,
D’Alessio
,
A.
, and
Sarofim
,
A. F.
, 2001, “
A Reaction Pathway for Nanoparticle Formation in Rich Premixed Flames
,”
Combust. Flame
0010-2180,
127
, pp.
1995
2003
.
31.
Bjorseth
,
A.
, 1985,
Handbook of Polycyclic Aromatic Hydrocarbons
,
Marcel Dekker
,
New York
.
32.
Glassman
,
I.
, 1996,
Combustion
,
3rd ed.
,
Academic Press
,
New York
.
33.
Richter
,
H.
,
Howard
,
J. B.
, 2000, “
Formation of Polycyclic Aromatic Hydrocarbons and Their Growth to Soot—A Review of Chemical Reaction Pathways
,”
Prog. Energy Combust. Sci.
0360-1285,
26
, pp.
565
608
.
34.
Kitsopanidis
,
I.
, 2004, “
Experimental and Computational Study of Soot Formation Under Diesel Engine Conditions
,” Ph.D. thesis, Department of Mechanical Engineering, MIT, July, available at http://libraries.mit.edu/http://libraries.mit.edu/
35.
Harris
,
S. J.
, and
Weiner
,
A. M.
, 1983, “
Determination of the Rate Constant for Soot Surface Growth
,”
Combust. Sci. Technol.
0010-2202,
32
, pp.
267
275
.
36.
Wersborg
,
B. L.
, and
Howard
,
J. B.
, 1975, “
Soot Concentration and Absorption Coefficient in a Low-Pressure Flame
,”
Combust. Flame
0010-2180,
24
, pp.
1
10
.
You do not currently have access to this content.