This paper presents the constrained optimization of the tilting pad bearing design on a gas turbine rotor system. A real coded genetic algorithm with a robust constraint handling technique is used as the optimization method. The objective is to develop a formulation of the optimization problem for the late bearing design of a complex rotor-bearing system. Furthermore, the usefulness of the search method is evaluated on a difficult problem. The effects considered are power loss and limiting temperatures in the bearings as well as the dynamics at the system level, i.e., stability and unbalance responses. The design variables are the bearing widths and radial clearances. A nominal design is the basis for comparison of the optimal solution found. An initial numerical experiment shows that finding a solution that fulfills all the constraints for the system design is likely impossible. Still, the optimization shows the possibility of finding a solution resulting in a reduced power loss while not violating any of the constraints more than the nominal design. Furthermore, the result also shows that the used search method and constraint handling technique works on this difficult problem.

1.
Hashimoto
,
H.
, and
Matsumoto
,
K.
, 2001, “
Improvement of Operating Characteristics of High-Speed Hydrodynamic Journal Bearings by Optimum Design: Part I—Formulation of Methodology and Its Application to Elliptical Bearing Design
,”
ASME J. Tribol.
0742-4787,
123
, pp.
305
312
.
2.
Chen
,
T. Y.
, and
Wang
,
B. P.
, 1993, “
Optimum Design of Rotor-Bearing Systems With Eigenvalue Constraints
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
115
, pp.
256
260
.
3.
Shiau
,
T. N.
, and
Chang
,
J. R.
, 1993, “
Multi-Objective Optimization of Rotor-Bearing System With Critical Speed Constraints
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
115
, pp.
246
255
.
4.
Choi
,
B. K.
, and
Yang
,
B. S.
, 2001, “
Optimal Design of Rotor-Bearing Systems Using Immune-Genetic Algorithm
,”
ASME J. Vibr. Acoust.
0739-3717,
123
, pp.
398
401
.
5.
Choi
,
S. P.
,
Kim
,
Y. C.
, and
Yang
,
B. S.
, 2002, “
Optimum Design for Rotor-Bearing Systems Using Advanced Genetic Algorithm
,”
Proceedings of the 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, Feb. 10–14.
6.
Angantyr
,
A.
, and
Aidanpää
,
J.-O.
, 2004, “
Optimization of a Rotor-Bearing System With an Evolutionary Algorithm
,”
Proceedings of the 10th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
D.
Bohn
ed., Honolulu, March 7–11, RWTH Aachen University, Aachen, pp.
95
96
.
7.
Gen
,
M.
, and
Cheng
,
R.
, 2000,
Genetic Algorithms & Engineering Optimization
,
Wiley
,
New York
.
8.
Angantyr
,
A.
,
Andersson
,
J.
, and
Aidanpää
,
J.-O.
, 2003, “
Constrained Optimization Based on a Multiobjective Evolutionary Algorithm
,”
Proceedings of the Congress on Evolutionary Computation
, Canberra, Australia,
R.
Sarker
et al.
eds.
IEEE
, New York,
3
, pp.
1560
1567
.
9.
Choi
,
B. K.
, and
Yang
,
B. S.
, 2000, “
Optimum Shape Design of Rotor Shafts Using Genetic Algorithm
,”
J. Vib. Control
1077-5463,
6
, pp.
207
222
.
10.
Choi
,
B. K.
, and
Yang
,
B. S.
, 2001, “
Multiobjective Optimum Design of Rotor-Bearing Systems With Dynamic Constraints Using Immune-Genetic Algorithm
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
123
, pp.
78
81
.
11.
Vance
,
J. M.
, 1988,
Rotordynamics of Turbomachinery
,
Wiley
,
New York
.
12.
Genta
,
G.
, 1999,
Vibration of Structures and Machines
,
Springer-Verlag
,
Berlin
.
13.
Mittwollen
,
N.
, and
Glienicke
,
J.
, 1990, “
Operating Conditions of Multi-Lobe Journal Bearings Under High Thermal Loads
,”
ASME J. Tribol.
0742-4787,
112
, pp.
330
340
.
14.
Cloud
,
C. H.
,
Foiles
,
W. C.
,
Li
,
G.
,
Maslen
,
E. H.
, and
Barret
,
L. E.
, 2002, “
Practical Applications of Singular Value Decomposition in Rotordynamics
,”
Proceedings of the Sixth International Conference on Rotor Dynamics
,
E. J.
Hahn
and
R. B.
Randall
, eds., Sydney, September 30–October 4,
UNSW Printing Services
,
Sydney
, Vol.
1
, pp.
429
438
.
15.
Olausson
,
H-L.
, and
Klang
,
A.
, 1988, “
Calculation of Unbalance Sensitivity in Complex Rotor Systems
,”
Proceedings of Vibrations in Rotating Machinery: International Conference
, Edinburgh, September,
IMechE
,
Edinburgh
, pp.
531
537
.
16.
Montgomery
,
D. C.
, 2001,
Design and Analysis of Experiments
,
Wiley
,
New York
.
17.
Kim
,
H. M.
, 2001, “
Target Cascading in Optimal System Design
,” Ph.D. thesis, Department of Mechanical Engineering, University of Michigan, Ann Arbor.
18.
Richardson
,
J. T.
,
Palmer
,
M. R.
,
Liepins
,
G.
, and
Hilliard
,
M.
, 1989, “
Some Guidelines for Genetic Algorithms With Penalty Functions
,”
Proceedings of the 3rd International Conference on Genetic Algorithms
,
J. D.
Schaffer
, ed.,
Morgan Kaufmann
,
Reading, MA
, pp.
191
197
.
19.
Eshelman
,
L. J.
, and
Schaffer
,
J. D.
, 1993, “
Real-Coded Genetic Algorithms and Interval-Schemata
,”
Foundations of Genetic Algorithms 2
,
L. D.
Whitley
, ed.,
Morgan Kaufmann
,
San Mateo, CA
, pp.
187
202
.
20.
Mühlenbein
,
H.
, and
Schlierkamp-Voosen
,
D.
, 1993, “
Predictive Models for the Breeder Genetic Algorithm: I. Continuous Parameter Optimization
,”
Evol. Comput.
1063-6560,
1
(
1
), pp.
25
49
.
You do not currently have access to this content.