Abstract

The objective of this paper is to provide a succinct review of past and current research in developing wave rotor technology. This technology has shown unique capabilities to enhance the performance and operating characteristics of a variety of engines and machinery utilizing thermodynamic cycles. Although there have been a variety of applications in the past, this technology is not yet widely used and is barely known to engineers. Here, an attempt is made to summarize both the previously reported work in the literature and ongoing efforts around the world. The paper covers a wide range of wave rotor applications including the early attempts to use wave rotors, its successful commercialization as superchargers for car engines, research on gas turbine topping, and other developments. The review also pays close attention to more recent efforts: utilization of such devices in pressure-gain combustors, ultra-micro gas turbines, and water refrigeration systems, highlighting possible further efforts on this topic. Observations and lessons learnt from experimental studies, numerical simulations, analytical approaches, and other design and analysis tools are presented.

References

1.
Weber
,
H. E.
, 1986, “
Shock-Expansion Wave Engines: New Directions for Power Production
,” ASME Paper 86-GT-62.
2.
Weber
,
H. E.
, 1995,
Shock Wave Engine Design
,
John Wiley and Sons
, New York.
3.
Iancu
,
F.
, and
Müller
,
N.
, 2005, “
Efficiency of Shock Wave Compression in a Microchannel
,”
Journal of Microfluid and Nanofluid
,
2
(
1
), pp.
50
63
.
4.
Paxson
,
D. E.
,1998, “
Wave Augmented Diffusers for Centrifugal Compressors
,” AIAA Paper 98-3401.
5.
Darrieus
,
G.
, 1950, “
Pressure Exchange Apparatus
,” U.S. Patent 2526618.
6.
Kentfield
,
J. A. C.
, 1993,
Nonsteady, One-Dimensional, Internal, Compressible Flows
,
Oxford University Press
, Oxford.
7.
Gyarmathy
,
G.
, 1983, “
How Does the Comprex Pressure-Wave Supercharger Work?
,” SAE Paper 830234.
8.
Zehnder
,
G.
,
Mayer
,
A.
, and
Mathews
,
L.
, 1989, “
The Free Running Comprex®
,” SAE Paper 890452.
9.
Hiereth
,
H.
, 1989, “
Car Tests With a Free-Running Pressure-Wave Charger—A Study for an Advanced Supercharging System
,” SAE Paper 890 453.
10.
Welch
,
G. E.
, 2000, “
Overview of Wave-Rotor Technology for Gas Turbine Engine Topping Cycles
,”
Novel Aero Propulsion Systems International Symposium
,
The Institution of Mechanical Engineers
, London, pp.
2
17
.
11.
Snyder
,
P. H.
, 1996, “
Wave Rotor Demonstrator Engine Assessment
,” NASA CR-198496.
12.
Snyder
,
P. H.
, and
Fish
,
R. E.
, 1996, “
Assessment of a Wave Rotor Topped Demonstrator Gas Turbine Engine Concept
,” ASME Paper 96-GT-41.
13.
Berchtold
,
M.
, 1985, “
The Comprex as a Topping Spool in a Gas Turbine Engine for Cruise Missile Propulsion
,”
Proceedings ONR/NAVAIR Wave Rotor Research and Technology Workshop
, Report NPS-67-85-008, pp.
284
290
,
Naval Postgraduate School
, Monterey, CA.
14.
Fatsis
,
A.
, and
Ribaud
,
Y.
, 1997, “
Numerical Analysis of the Unsteady Flow Inside Wave Rotors Applied to Air Breathing Engines
,”
13th International Symposium on Airbreathing Engines
,
Paper ISABE-97-7214.
15.
Mathur
,
A.
, 1985 “
A Brief Review of the GE Wave Engine Program (1958-1963)
,”
Proceedings ONR/NAVAIR Wave Rotor Research and Technology Workshop
, Report NPS-67-85-008, pp.
171
193
,
Naval Postgraduate School
, Monterey, CA.
16.
Welch
,
G. E.
, 1997, “
Macroscopic Balance Model for Wave Rotors
,”
J. Propul. Power
0748-4658,
13
(
4
), pp.
508
516
.
17.
Welch
,
G. E.
,
Jones
,
S. M.
, and
Paxson
,
D. E.
, 1997, “
Wave Rotor-Enhanced Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
119
(
2
), pp.
469
477
.
18.
Knauff
,
R.
, 1906, “
Converting Pressures of Liberated Gas Energy into Mechanical Work
,” British Patent 2818.
19.
Pearson
,
R. D.
, 1982, “
Pressure Exchangers and Pressure Exchange Engines
,” in
The Thermodynamics and Gas Dynamics of Internal Combustion Engines
Vol.
1
,
R.
Benson
, ed.,
Oxford University Press
, Chap. 16, pp.
903
940
.
20.
Knauff
,
R.
, 1906, “
Converting Internal Gas Energy into Mechanical Work
,” British Patent 8273.
21.
Burghard
,
H.
, 1913, British Patent 19421.
22.
Lebre
,
A. F.
, 1928, British Patent 290669.
23.
Burghard
,
H.
, 1929, German Patent 485386.
24.
Kentfield
,
J. A. C.
, 1998, “
Wave Rotors and Highlights of Their Development
,” AIAA Paper 98-3248.
25.
Meyer
,
A.
, 1947, “
Recent Developments in Gas Turbines
,”
Journal of Mechanical Engineering
,
69
(
4
), pp.
273
277
.
26.
Real
,
R.
, 1946, “
The 3000kW Gas Turbine Locomotive Unit
,”
Brown Boveri Rev.
0007-2486,
33
(
10
), pp.
270
271
.
27.
Meyer
,
A.
, 1947, “
Swiss Develop New Gas Turbine Units
,”
Electr. World
0013-4457,
127
, pp.
38
40
.
28.
Azoury
,
P. H.
, 1992,
Engineering Applications of Unsteady Fluid Flow
,
John Wiley and Sons
, New York.
29.
Rose
,
P. H.
, 1979, “
Potential Applications of Wave Machinery to Energy and Chemical Processes
,”
Proceedings of the 12th International Symposium on Shock Tubes and Waves
, Jerusalem, July 16–19, pp.
3
30
.
30.
Seippel
,
C.
, 1940, Swiss Patent 225426.
31.
Seippel
,
C.
, 1942, Swiss Patent 229280.
32.
Seippel
,
C.
, 1946, “
Pressure Exchanger
,” U.S. Patent 2399394.
33.
Seippel
,
C.
, 1949, “
Gas Turbine Installation
,” U.S. Patent 2461186.
34.
Berchtold
,
M.
, and
Gardiner
,
F. J.
, 1958, “
The Comprex: A New Concept of Diesel Supercharging
,” ASME Paper 58-GTP-16.
35.
Berchtold
,
M.
, 1958, “
The Comprex Diesel Supercharger
,” SAE Paper No. 63A.
36.
Berchtold
,
M.
, and
Gull
,
H. P.
, 1959, “
Road Performance of a Comprex Supercharged Diesel Truck
,” SAE Paper No. 118U.
37.
Taussig
,
R. T.
, and
Hertzberg
,
A.
, 1984, “
Wave Rotors for Turbomachinery
,” Winter Annual Meeting of the ASME, Machinery for Direct Fluid-Fluid Energy Exchange, edited by
J. F.
Sladky
, AD-07, pp.
1
7
.
38.
Doerfler
,
P. K.
, 1975, “
Comprex Supercharging of Vehicle Diesel Engines
,” SAE Paper 750335.
39.
Schruf
,
G. M.
, and
Kollbrunner
,
T. A.
, 1984, “
Application and Matching of the Comprex Pressure-Wave Supercharger to Automotive Diesel Engines
,” SAE Paper 840133.
40.
Zehnder
,
G.
, and
Mayer
,
A.
, 1984, “
Comprex® Pressure-Wave Supercharging for Automotive Diesels—State-of-the-Art
,” SAE Paper 840132.
41.
Berchtold
,
M.
, 1985, “
The Comprex®
,”
Proceedings ONR /NAVAIR Wave Rotor Research and Technology Workshop
, Naval Postgraduate School, Monterey, CA, Report NPS-67-85-008, pp.
50
74
.
42.
Azoury
,
P. H.
, 1965-1966, “
An Introduction to the Dynamic Pressure Exchanger
,”
Proc. Inst. Mech. Eng.
0020-3483,
180
(
18
), Part 1, pp.
451
480
.
43.
Guzzella
,
L.
,
Wenger
,
U.
, and
Martin
,
R.
, 2000, “
IC-Engine Downsizing and Pressure-Wave Supercharging for Fuel Economy
,” SAE Paper 2000-01-1019.
44.
Mayer
,
A.
,
Oda
,
J.
,
Kato
,
K.
,
Haase
,
W.
, and
Fried
,
R.
, 1989, “
Extruded Ceramic—A New Technology for the Comprex® Rotor
,” SAE Paper 890453.
45.
Guzzella
,
L.
, and
Martin
,
R.
, 1998, “
The Save Engine Concept
,” MTZ Report 10, pp.
9
12
.
46.
Burri
,
H.
, 1958, “
Nonsteady Aerodynamics of the Comprex Supercharger
,” ASME Paper 58-GTP-15.
47.
Wunsch
,
A.
, 1971, “
Fourier-Analysis Used in the Investigation of Noise Generated by Pressure Wave Machines
,”
Brown Boveri Rev.
0007-2486,
71
(
4-5
).
48.
Croes
,
N.
, 1977, “
The Principle of the Pressure-Wave Machine as Used for Charging Diesel Engines
,”
Proceedings of the 11th International Symposium on Shock Tubes and Waves
, Seattle, July 11–14, pp.
36
55
49.
Summerauer
,
I.
,
Spinnler
,
F.
,
Mayer
,
A.
, and
Hafner
,
A.
, 1978, “
A Comparative Study of the Acceleration Performance of a Truck, Diesel Engine With Exhaust-Gas Turbocharger and With Pressure-Wave Supercharger Comprex®
,” The Institution of Mechanical Engineers, London, Paper C70/78.
50.
Kollbrunner
,
T. A.
, 1980, “
Comprex Supercharging for Passenger Diesel Car Engines
,” SAE Paper 800884.
51.
Jenny
,
E.
, and
Zumstein
,
B.
, 1982, “
Pressure Wave Supercharger of Passenger Car Diesel Engines
,” The Institution of Mechanical Engineers, London, Paper C44/82.
52.
Keller
,
J. J.
, 1984, “
Some Fundamentals of the Supercharger Comprex
,”
Presented at Winter Annual Meeting of the ASME
, Machinery for Direct Fluid-Fluid Energy Exchange, edited by
J. F.
Sladky
, Jr.
, AD-07, pp.
47
54
.
53.
Rebling
,
P.
, and
Jaussi
,
F.
, 1984, “
Field Experience with a Fleet of Test Cars Equipped with Comprex Supercharged Engines
,” Institution of Mechanical Engineers, London, Paper C442/84.
54.
Schneider
,
G.
, 1986, “
Comprex® Pressure Wave Supercharger in an Opel Senator with 2.3 Liter Diesel Engine
,”
Brown Boveri Rev.
0007-2486,
73
(
10
), pp.
563
565
.
55.
Zehnder
,
G.
, 1971, “
Calculating Gas Flow in Pressure-Wave Machines
,”
Brown Boveri Rev.
0007-2486,
71
(
4-5
), pp.
172
176
.
56.
Mayer
,
A.
, and
Schruf
,
G.
, 1982, “
Practical Experience with Pressure Wave Supercharger Comprex on Passenger Cars
,” The Institution of Mechanical Engineers, London, Paper C110/82.
57.
Zehnder
,
G.
, and
Mayer
,
A.
, 1986, “
Supercharging with Comprex to Improve the Transient Behavior of Passenger Car Diesel Engines
,” SAE Paper 860450.
58.
Spinnler
,
F.
, and
Jaussi
,
F. A.
, 1986, “
The Fully Self-Regulated Pressure Wave Supercharger Comprex for Passenger Car Diesel Engines
,” The Institution of Mechanical Engineers, London, Paper C124/86.
59.
Jenny
,
E.
,
Moser
,
P.
, and
Hansel
,
J.
, 1986, “
Progress with Variable Geometry and Comprex
,” Institution of Mechanical Engineers Conference, London, Paper C109/86.
60.
Jenny
,
E.
, and
Naguib
,
M.
, 1987, “
Development of the Comprex Pressure-Wave Supercharger: In the Tradition of Thermal Turbomachinery
,”
Brown Boveri Rev.
0007-2486,
74
(
8
), pp.
416
421
.
61.
Mayer
,
A.
, 1987, “
The Comprex Supercharger—A Simple Machine for a Highly Complex Thermodynamic Process
,”
Brown Boveri Rev.
0007-2486,
74
(
8
), pp.
422
430
.
62.
Zehnder
,
G.
, and
Müller
,
R.
, 1987, “
Comprex Pressure-Wave Supercharger for Car Diesel Engines
,”
Brown Boveri Rev.
0007-2486,
74
(
8
), pp.
431
437
.
63.
Mayer
,
A.
, 1988, “
Comprex-Supercharging Eliminates Trade-off of Performance, Fuel Economy and Emissions
,” SAE Paper 881152.
64.
Mayer
,
A.
, and
Pauli
,
E.
, 1988, “
Emissions Concept for Vehicle Diesel Engines Supercharged with Comprex
,” SAE Paper 880008.
65.
Mayer
,
A.
, 1988, “
The Free Running Comprex—A New Concept for Pressure Wave Supercharger
,” SAE Document PC 55.
66.
Amstutz
,
A.
,
Pauli
,
E.
, and
Mayer
,
A.
, 1990, “
System Optimization with Comprex Supercharging and EGR Control of Diesel Engines
,” SAE Paper 905097.
67.
Mayer
,
A.
,
Nashar
,
I.
,
Perewusnyk
,
J.
, 1990, “
Comprex with Gas Pocket Control
,” The Institution of Mechanical Engineers, London, Paper C405/032.
68.
Mayer
,
A.
,
Pauli
,
E.
, and
Gygax
,
J.
, 1990, “
Comprex (R) Supercharging and Emissions Reduction in Vehicles Diesel Engines
,” SAE Paper 900881.
69.
Barry
,
F. W.
, 1950, “
Introduction to the Comprex
,”
ASME J. Appl. Mech.
0021-8936, March, pp.
47
53
.
70.
Lutz
,
T. W.
, and
Scholz
,
R.
, 1968, “
Supercharging Vehicle Engines by the Comprex System
,” The Institution of Mechanical Engineers, London, October.
71.
Berchtold
,
M.
, and
Lutz
,
T. W.
, 1974, “
A New Small Power Output Gas Turbine Concept
,” ASME Paper 74-GT-111.
72.
Berchtold
, 1974, “
The Comprex Pressure Exchanger: A New Device for Thermodynamic Cycles
,” JSAE Paper, Tokyo.
73.
Eisele
,
E.
,
Hiereth
,
H.
, and
Polz
,
H.
, 1975, “
Experience with Comprex Pressure Wave Supercharger on the High-Speed Passenger Car Diesel Engine
,” SAE Paper 750334.
74.
Groenewold
,
G. M.
,
Welliver
,
D. R.
, and
Kamo
,
R.
, 1977, “
Performance and Sociability of Comprex Supercharged Diesel Engine
,” ASME Paper 77-DGP-4.
75.
Schwarzbauer
,
G. E.
, 1978, “
Turbocharging of Tractor Engines with Exhaust Gas Turbochargers and the BBC-Comprex
,” The Institution of Mechanical Engineers, London, Paper C69/78.
76.
Walzer
,
P.
, and
Rottenkolber
,
P.
, 1982, “
Supercharging of Passenger Car Diesel Engines
,” The Institution of Mechanical Engineers, London, Paper C117/82.
77.
Wallace
,
F. J.
, and
Aldis
,
C. A.
, 1982, “
Comprex Supercharging Versus Turbocharging of a Large Truck Diesel Engine
,” The Institution of Mechanical Engineers, London, Paper C39/82.
78.
Hong-De
,
J.
, 1983, “
Two-Dimensional Unsteady Flow in Comprex Rotor
,” Tokyo International Gas Turbine Congress, Paper 83-Tokyo-IGTC-59.
79.
Zhang
,
H. S.
, and
So
,
R. M.
, 1990, “
Calculation of the Material Interface in a Pressure-Wave Supercharger
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
204
(
A3
), pp.
151
161
.
80.
Hitomi
,
M.
,
Yuzuriha
,
Y.
, and
Tanake
,
K.
, 1989, “
The Characteristics of Pressure Wave Supercharged Small Diesel Engine
,” SAE Paper 89054.
81.
Zauner
,
E.
,
Chyou
,
Y. P.
,
Walraven
,
F.
, and
Althaus
,
R.
, 1993, “
Gas Turbine Topping Stage Based on Energy Exchangers: Process and Performance
,” ASME Paper 93-GT-58.
82.
Anonymous
, 1997, “
A Pressure-Wave Machine with Integrated Constant-Volume Combustion
,” NEFF Funding of Swiss Energy Research 1977-1997, Project No. 426, pp.
142
153
.
83.
Nalim
,
M. R.
, and
Pekkan
,
K.
, 2003, “
Internal Combustion Wave Rotors for Gas Turbine Engine Enhancement
,” ASME Paper IGTC-2003-FR-303.
84.
Nalim
,
M. R.
, and
Pekkan
,
K.
, 2003, “
A Review of Rotary Pressure-Gain Combustion Systems for Gas Turbine Applications
,” ASME Paper GT-2003-38349.
85.
Nour Eldin
,
H. A.
,
Oberhem
,
H.
, and
Schuster
,
U.
, 1987, “
The Variable Grid-Method for Accurate Animation of Fast Gas Dynamics and Shock-Tube Like Problems
,”
Proceedings of the IMACS/IFAC International Symposium on Modeling and Simulation of Distributed Parameter Systems
, Japan, pp.
433
440
.
86.
Oberhem
,
H.
, and
Nour Eldin
,
H. A.
, 1990, “
Fast and Distributed Algorithm for Simulation and Animation of Pressure Wave Machines
,”
Proceedings of the IMACS International Symposium on Mathematical and Intelligent Models in System Simulation
, Belgium, pp.
807
815
.
87.
Oberhem
,
H.
, and
Nour Eldin
,
H. A.
, 1991, “
A Variable Grid for Accurate Animation of the Nonstationary Compressible Flow in the Pressure Wave Machine
,”
7th International Conference on Numerical Methods in Laminar and Turbulent Flow
, U.S.
88.
Nour Eldin
,
H. A.
, and
Oberhem
,
H.
, 1993, “
Accurate Animation of the Thermo-Fluidic Performance of the Pressure Wave Machine and its Balanced Material Operation
,”
8th International Conference on Numerical Methods in Laminar and Turbulent Flow
, UK.
89.
Markarious
,
S. H.
,
Nour Eldin
,
H. A.
, and
Pu
,
H.
, 1995, “
Inverse Problem Approach for Unsteady Compressible Fluid-Wave Propagation in the Comprex
,”
9th International Conference on Numerical Methods in Laminar and Turbulent Flow
, U.S.
90.
Oberhem
,
H.
, and
Nour Eldin
,
H. A.
, 1995, “
Accurate Animation of the Thermo-Fluidic Performance of the Pressure-Wave Machine and its Balanced Material Operation
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
5
(
1
), pp.
63
74
.
91.
Markarious
,
S. H.
,
Hachicho
,
O. H.
, and
Nour Eldin
,
H. A.
, 1997, “
Wave-Control Modeling in the Pressure-Wave Supercharger Comprex
,”
10th International Conference on Numerical Methods in Laminar and Turbulent Flow
, UK.
92.
Piechna
,
J.
, 1998, “
Comparison of Different Methods of Solution of Euler Equations in Application to Simulation of the Unsteady Processes in Wave Supercharger
,”
The Archive of Mechanical Engineering
,
45
(
2
), pp.
87
106
.
93.
Piechna
,
J.
, 1998, “
Numerical Simulation of the Comprex Type of Supercharger: Comparison of Two Models of Boundary Conditions
,”
The Archive of Mechanical Engineering
,
45
(
3
), pp.
233
250
.
94.
Piechna
,
J.
, 1998, “
Numerical Simulation of the Pressure Wave Supercharger - Effects of Pockets on the Comprex Supercharger Characteristics
,”
The Archive of Mechanical Engineering
,
45
(
4
), pp.
305
323
.
95.
Piechna
,
J.
, and
Lisewski
,
P.
, 1998, “
Numerical Analysis of Unsteady Two-Dimensional Flow Effects in the Comprex Supercharger
,”
The Archive of Mechanical Engineering
,
45
(
4
), pp.
341
351
.
96.
Selerowicz
,
W.
, and
Piechna
,
J.
, 1999, “
Comprex Type Supercharger as a Pressure-Wave Transformer Flow Characteristics
,”
The Archive of Mechanical Engineering
,
46
(
1
), pp.
57
77
.
97.
Elloye
,
K. J.
, and
Piechna
,
J.
, 1999, “
Influence of the Heat Transfer on the Operation of the Pressure Wave Supercharger
,”
The Archive of Mechanical Engineering
,
46
(
4
), pp.
297
309
.
98.
Piechna
,
J.
, 1999, “
A Two-Dimensional Model of the Pressure Wave Supercharger
,”
The Archive of Mechanical Engineering
,
46
(
4
), pp.
331
348
.
99.
Oguri
,
Y.
,
Suzuki
,
T.
,
Yoshida
,
M.
, and
Cho
,
M.
, 2001, “
Research on Adaptation of Pressure Wave Supercharger (PWS) to Gasoline Engine
,” SAE Paper 2001-01-0368.
100.
Pfiffner
,
R.
,
Weber
,
F.
,
Amstutz
,
A.
, and
Guzzella
,
L.
, 1997, “
Modeling and Model based Control of Supercharged SI-Engines for Cars with Minimal Fuel Consumption
,”
Proceedings of the American Control Conference
, Vol.
1
, pp.
304
308
.
101.
Weber
,
F.
, and
Guzzella
,
L.
, 2000, “
Control Oriented Modeling of a Pressure Wave Supercharger
,” SAE Paper 2000-01-0567.
102.
Weber
,
F.
,
Spring
,
P.
,
Guzzella
,
L.
, and
Onder
,
C.
, 2001, “
Modeling of a Pressure Wave Supercharged SI Engine Including Dynamic EGR Effects
,”
3rd International Conference on Control and Diagnostics in Automotive Applications
, Italy.
103.
Weber
,
F.
,
Guzzella
,
L.
, and
Onder
,
C.
, 2002, “
Modeling of a Pressure Wave Supercharger Including External Exhaust Gas Recirculation
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
216
(
3
), pp.
217
235
104.
Spring
,
P.
,
Guzzella
,
L.
, and
Onder
,
C.
, 2003, “
Optimal Control Strategy for a Pressure-Wave Supercharged SI Engine
,” ASME Paper ICES2003-645, Austria.
105.
Icingür
,
Y.
,
Hasimoglu
,
C.
, and
Salman
,
M. S.
, 2003, “
Effect of Comprex Supercharging on Diesel Emissions
,”
Energy Convers. Manage.
0196-8904,
44
, pp.
1745
1753
.
106.
Weatherston
,
R. C.
, and
Hertzberg
,
A.
, 1967, “
The Energy Exchanger, A New Concept for High-Efficiency Gas Turbine Cycles
,”
ASME J. Eng. Power
0022-0825,
89
, pp.
217
228
.
107.
Hendricks
,
J. R.
, 1991, “
Wave Rotor Diffusers
,” M.S. thesis, Cornell University, Ithaca, New York.
108.
Mathis
,
G. P.
, 1991, “
Wave Enhanced Gas Turbine Engine Cycles
,” M.S. thesis, Cornell University, Ithaca, New York.
109.
Nalim
,
M. R.
,
Moscari
,
J. C.
, and
Resler
,
E. L.
, 1993, “
Wave Cycle Design for NOX Limited Wave Rotor Core Engines for High Speed Propulsion
,” ASME Paper 93-GT-426.
110.
Resler
,
E. L.
,
Moscari
,
J. C.
, and
Nalim
,
M. R.
, 1994, “
Analytic Design Methods for Wave Cycles
,”
J. Propul. Power
0748-4658,
10
(
5
), pp.
683
689
.
111.
Mocsari
,
J. C.
, 1994, “
Design of Wave Rotor Topping Cycles for Propulsion and Shaftpower
,” M.S. thesis, Cornell University, Ithaca, New York.
112.
Nalim
,
M. R.
, 1994, “
Wave Cycle Design for Wave Rotor Engines with Limited Nitrogen-Oxide Emissions
,” Ph.D. thesis, Cornell University, Ithaca, New York.
113.
Nalim
,
M. R.
, and
Resler
,
E. L.
, 1996, “
Wave Cycle Design for Wave Rotor Gas Turbine Engines with Low NOX Emissions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
118
(
3
), pp.
474
480
.
114.
Resler
,
E. L.
, 2001, “
Shock Wave Propulsion
,”
Int. J. Chem. Kinet.
0538-8066,
33
(
12
), pp.
846
852
.
115.
Müller
,
M. A.
, 1954, German Patents 916607 and 924845.
116.
Foa
,
J. V.
, 1960,
Elements of Flight Propulsion
,
John Wiley and Sons
, New York.
117.
Taussig
,
R. T.
, 1984, “
Wave Rotor Turbofan Engines for Aircraft
,” Winter Annual Meeting of the ASME, Machinery for Direct Fluid-Fluid Energy Exchange, edited by
J. F.
,
Sladky
, paper AD-07, pp.
9
45
.
118.
Kentfield
,
J. A. C.
, 1985, “
The Pressure Exchanger, An Introduction Including a Review of the Work of Power Jets (R & D) Ltd.
,”
Proceedings ONR/NAVAIR Wave Rotor Research and Technology Workshop
, Naval Postgraduate School, Monterey, CA, Report NPS-67-85-008, pp.
9
49
.
119.
Jendrassik
,
G.
, 1956, “
Jet Reaction Propulsion Units Utilizing a Pressure Exchanger
,” U.S. Patent 2757509.
120.
Jendrassik
,
G.
, 1960, “
Pressure Exchangers and Applications Thereof
,” U.S. Patent 2946184.
121.
Spalding
,
D. B.
, 1985, “
Remarks on the Applicability of Computational Fluid Dynamics to Wave Rotor Technology
,”
Proceedings ONR/NAVAIR Wave Rotor Research and Technology Workshop
, Naval Postgraduate School, Monterey, CA, Report NPS-67-85-008, pp.
403
449
.
122.
Jonsson
,
V. K.
,
Matthews
,
L.
, and
Spalding
,
D. B.
, 1973, “
Numerical Solution Procedure for Calculating the Unsteady, One-Dimensional Flow of Compressible Fluid
,” ASME Paper 73-FE-30.
123.
Matthews
,
L.
, 1969, “
An Algorithm for Unsteady Compressible One-Dimensional Fluid Flow
,” M.S. thesis, University of London.
124.
Azim
,
A.
, 1974, “
An Investigation Into the Performance and Design of Pressure Exchangers
,” Ph.D. thesis, University of London.
125.
Azoury
,
P. H.
, and
Hai
,
S. M.
, 1975, “
Computerized Analysis of Dynamic Pressure Exchanger Scavenge Processes
,”
Proc. Inst. Mech. Eng.
0020-3483,
189
, pp.
149
158
.
126.
Azoury
,
P. H.
, 1960, “
The Dynamic Pressure Exchanger-Gas Flow in a Model Cell
,” Ph.D. thesis, University of London.
127.
Kentfield
,
J. A. C.
, 1963, “
An Examination of the Performance of Pressure Exchanger Equalizers and Dividers
,” Ph.D. thesis, University of London.
128.
Kentfield
,
J. A. C.
, 1968, “
An Approximation Method for Predicting the Performance of Pressure Exchangers
,” ASME Paper 68-WA-FE-37.
129.
Kentfield
,
J. A. C.
, 1969, “
The Performance of Pressure-Exchanger Dividers and Equalizers
,”
ASME J. Basic Eng.
0021-9223,
91
(
3
), pp.
361
370
.
130.
Kentfield
,
J. A. C.
, and
Barnes
,
J. A.
, 1976, “
The Pressure Divider: A Device for Reducing Gas-Pipe-Line Pumping-Energy Requirements
,”
Proceedings of 11th Intersociety Energy Conversion Engineering Conference
, pp.
636
643
.
131.
Kentfield
,
J. A. C.
, 1998, “
Circumferential Cell-Dividers in Wave Rotors
,” AIAA Paper 98-3397.
132.
Pearson
,
R. D.
, 1983, “
A Pressure Exchange Engine for Burning Pyroil as the End User in a Cheap Power from Biomass System
,”
15th International Congress of Combustion Engines
, Paris.
133.
Pearson
,
R. D.
, 1985, “
A Gas Wave-Turbine Engine Which Developed 35 HP and Performed Over a 6:1 Speed Range
,”
Proceedings ONR/NAVAIR Wave Rotor Research and Technology Workshop
, Naval Postgraduate School, Monterey, CA, Report NPS-67-85-008, pp.
403
449
.
134.
Shreeve
,
R.
,
Mathur
,
A.
,
Eidelman
,
S.
, and
Erwin
,
J.
, 1982, “
Wave Rotor Technology Status and Research Progress Report
,” Naval Post-Graduate School, Monterey, CA, Report NPS-67-82-014PR.
135.
Coleman
,
R. R.
, 1984, “
Wave Engine Technology Development
,” Final report prepared by General Power Corporation for AFWAL, Contract No. AFWAL-TR-83-2095.
136.
Coleman
,
R. R.
, 1994, “
Cycle for a Three-Stage Ultrahigh Pressure Ratio Wave Turbine Engine
,” AIAA Paper 94-2725.
137.
Lear
,
W. E.
, 1997, “
Advanced Wave Rotor, Fluid-Fluid Exchanger
,” Phase II report prepared by Unistry Associates for NASA, Contract No. NAS3-27647.
138.
Moritz
,
R.
, 1985, “
Rolls-Royce Study of Wave Rotors (1965–1970)
,”
Proceedings ONR/NAVAIR Wave Rotor Research and Technology Workshop
, Naval Postgraduate School, Monterey, CA, Report NPS-67-85-008, pp.
116
124
.
139.
Zumdiek
,
J. F.
,
Thayer
,
W. J.
,
Cassady
,
P. E.
,
Taussig
,
R. T.
,
Christiansen
,
W. H.
, and
Hertzberg
,
A.
, 1979, “
The Energy Exchanger in Advanced Power Cycle Systems
,”
Proceedings of the 14th Intersociety Energy Conversion Engineering Conference
, Boston.
140.
Thayer
,
W. J.
, and
Taussig
,
R. T.
, 1982, “
Erosion Resistance and Efficiency of Energy Exchangers
,” ASME Paper 82-GT-191.
141.
Zumdiek
,
J. F.
,
Vaidyanathan
,
T. S.
,
Klosterman
,
E. L.
,
Taussig
,
R. T.
,
Cassady
,
P. E.
,
Thayer
,
W. J.
, and
Christiansen
,
W. H.
, 1979, “
The Fluid Dynamic Aspects of an Efficient Point Design Energy Exchanger
,”
Proceedings of the 12th International Symposium on Shock Tubes and Waves
, Jerusalem.
142.
Thayer
,
W. J.
,
Vaidyanathan
,
T. S.
, and
Zumdiek
,
J. F.
, 1980, “
Measurements and Modeling of Energy Exchanger Flow
,”
Proceedings of the 14th Intersociety Energy Conversion Engineering Conference
, Seattle.
143.
Thayer
,
W. J.
, and
Zumdiek
,
J. F.
, 1981, “
A Comparison of Measured and Computed Energy Exchanger Performance
,”
Proceedings of the 13th International Symposium on Shock Tubes and Waves
, Niagara Falls.
144.
Thayer
,
W. J.
, 1985, “
The MSNW Energy Exchanger Research Program
,”
Proceedings ONR/NAVAIR Wave Rotor Research and Technology Workshop
, Naval Postgraduate School, Monterey, CA, Report NPS-67-85-008, pp.
85
116
.
145.
Taussig
,
R. T.
, 1984, “
Wave Rotor Turbofan Engines for Aircraft
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
106
(
11
), pp.
60
68
.
146.
Mathur
,
A.
, 1985, “
Design and Experimental Verification of Wave Rotor Cycles
,”
Proceedings ONR/NAVAIR Wave Rotor Research and Technology Workshop
, Naval Postgraduate School, Monterey, CA, Report NPS-67-85-008, pp.
215
228
.
147.
Eidelman
,
S.
,
Mathur
,
A.
,
Shreeve
,
R. P.
, and
Erwin
,
J.
, 1984, “
Application of Riemann Problem Solvers to Wave Machine Design
,”
AIAA J.
0001-1452,
22
(
7
), pp.
1010
1012
.
148.
Eidelman
,
S.
, 1985, “
The Problem of Gradual Opening in Wave Rotor Passages
,”
J. Propul. Power
0748-4658,
1
(
1
), pp.
23
28
.
149.
Eidelman
,
S.
, 1985, “
Gradual Opening of Rectangular and Skewed Wave Rotor Passages
,”
Proceedings ONR/NAVAIR Wave Rotor Research and Technology Workshop
, Naval Postgraduate School, Monterey, CA, Report NPS-67-85-008, pp.
229
2249
.
150.
Mathur
,
A.
,
Shreeve
,
R. P.
, and
Eidelman
,
S.
, 1984, “
Numerical Techniques for Wave Rotor Cycle Analysis
,” American Society of Mechanical Engineers, Fluids Engineering Division (Publication) Vol.
15
, presented at the 1984 Winter Annual Meeting of the American Society of Mechanical Engineers, U.S.
151.
Eidelman
,
S.
, 1986, “
Gradual Opening of Skewed Passages in Wave Rotors
,”
J. Propul. Power
0748-4658,
2
(
4
), pp.
379
381
.
152.
Mathur
,
A.
, 1985, “
Wave Rotor Research: A Computer Code for Preliminary Design of Wave Diagrams
,” Naval Postgraduate School, Monterey, CA, Report NPS67-85-006CR.
153.
Mathur
,
A.
, and
Shreeve
,
R. P.
, 1987, “
Calculation of Unsteady Flow Processes in Wave Rotors
,” AIAA Paper 87-0011.
154.
Mathur
,
A.
, 1986, “
Code Development for Turbofan Engine Cycle Performance With and Without a Wave Rotor Component
,” Naval Postgraduate School, Monterey, CA, Report NPS67-86-006CR.
155.
Mathur
,
A.
, 1986, “
Estimation of Turbofan Engine Cycle Performance With and Without a Wave Rotor Component
,” Naval Postgraduate School, Monterey, CA, Report NPS67-86-008CR.
156.
Roberts
,
J. W.
, 1990, “
Further Calculations of the Performance of Turbofan Engines Incorporating a Wave Rotor
,” M.S. thesis, Naval Postgraduate School, CA.
157.
Salacka
,
T. F.
, 1985, “
Review, Implementation and Test of the QAZID Computational Method with a View to Wave Rotor Applications
,” M.S. thesis, Naval Postgraduate School, CA.
158.
Johnston
,
D. T.
, 1987, “
Further Development of a One-Dimensional Unsteady Euler Code for Wave Rotor Applications
,” M.S. thesis, Naval Postgraduate School, CA.
159.
Shreeve
,
R. P.
, and
Mathur
,
A.
, 1985,
Proceedings ONR/NAVAIR Wave Rotor Research and Technology Workshop
, Naval Postgraduate School, Monterey, CA, Report NPS-67-85-008.
160.
Wilson
,
J.
, and
Paxson
,
D. E.
, 1993, “
Jet Engine Performance Enhancement Through Use of a Wave-Rotor Topping Cycle
,” NASA TM-4486.
161.
Welch
,
G. E.
, 1997, “
Wave Engine Topping Cycle Assessment
,” AIAA Paper 97-0707.
162.
Welch
,
G. E.
, and
Paxson
,
D. E.
, 1998, “
Wave Turbine Analysis Tool Development
,” AIAA Paper 98-3402.
163.
Paxson
,
D. E.
, 1992, “
A General Numerical Model for Wave-Rotor Analysis
,” NASA TM-105740.
164.
Paxson
,
D. E.
, 1993, “
An Improved Numerical Model for Wave Rotor Design and Analysis
,” AIAA Paper 93-0482.
165.
Paxson
,
D. E.
, 1995, “
Comparison Between Numerically Modeled and Experimentally Measured Wave-Rotor Loss Mechanism
,”
J. Propul. Power
0748-4658,
11
(
5
), pp.
908
914
.
166.
Wilson
,
J.
, and
Fronek
,
D.
, 1993, “
Initial Results from the NASA-Lewis Wave Rotor Experiment
,” AIAA Paper 93-2521.
167.
Wilson
,
J.
, 1997, “
An Experiment on Losses in a Three Port Wave-Rotor
,” NASA CR-198508.
168.
Wilson
,
J.
, 1998, “
An Experimental Determination of Loses in a Three-Port Wave Rotor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
120
(
4
), pp.
833
842
169.
Welch
,
G. E.
, and
Chima
,
R. V.
, 1993, “
Two-Dimensional CFD Modeling of Wave Rotor Flow Dynamics
,” AIAA Paper 93-3318.
170.
Welch
,
G. E.
, 1993, “
Two-Dimensional Numerical Study of Wave-Rotor Flow Dynamics
,” AIAA Paper 93-2525.
171.
Welch
,
G. E.
, 1997, “
Two-Dimensional Computational Model for Wave Rotor Flow Dynamics
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
119
(
4
), pp.
978
985
172.
Larosiliere
,
L. M.
, 1995, “
Wave Rotor Charging Process: Effects of Gradual Opening and Rotation
,”
J. Propul. Power
0748-4658,
11
(
1
), pp.
178
184
173.
Larosiliere
,
L. M.
, and
Mawid
,
M.
, 1995, “
Analysis of Unsteady Wave Processes in a Rotating Channel
,”
Int. J. Numer. Methods Fluids
0271-2091,
21
(
6
), pp.
467
488
174.
Welch
,
G. E.
, and
Larosiliere
,
L. M.
, 1997, “
Passage-Averaged Description of Wave Rotor Flow
,” AIAA Paper 97-3144
175.
Paxson
,
D. E.
, and
Wilson
,
J.
, 1995, “
Recent Improvements to and Validation of the One Dimensional NASA Wave Rotor Model
,” NASA TM-106913.
176.
Paxson
,
D. E.
, 1998, “
An Incidence Loss Model for Wave Rotors with Axially Aligned Passages
,” AIAA Paper 98-3251
177.
Paxson
,
D. E.
, 1996, “
Numerical Simulation of Dynamic Wave Rotor Performance
,”
J. Propul. Power
0748-4658,
12
(
5
), pp.
949
957
.
178.
Paxson
,
D. E.
, and
Lindau
,
J. W.
, 1997, “
Numerical Assessment of Four-Port Through-Flow Wave Rotor Cycles with Passage Height Variation
,” AIAA Paper 97-3142.
179.
Paxson
,
D. E.
, 1997, “
A Numerical Investigation of the Startup Transient in a Wave Rotor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
119
(
3
), pp.
676
682
.
180.
Wilson
,
J.
, and
Paxson
,
D. E.
, 1996, “
Wave Rotor Optimization for Gas Turbine Topping Cycles
,”
J. Propul. Power
0748-4658,
12
(
4
), pp.
778
785
181.
Wilson
,
J.
, 1997, “
Design of the NASA Lewis 4-Port Wave Rotor Experiment
,” AIAA Paper 97-3139.
182.
Paxson
,
D. E.
, and
Nalim
,
M. R.
, 1999, “
Modified Through-Flow Wave-Rotor Cycle with Combustor Bypass Ducts
,”
J. Propul. Power
0748-4658,
15
(
3
), pp.
462
467
183.
Nalim
,
M. R.
, and
Paxson
,
D. E.
, 1999, “
Method and Apparatus for Cold-Gas Reinjection in Through-Flow and Reverse-Flow Wave Rotors
,” U.S. Patent 5894719.
184.
Nalim
,
M. R.
, 1995, “
Preliminary Assessment of Combustion Modes for Internal Combustion Wave Rotors
,” AIAA Paper 95-2801.
185.
Nalim
,
M. R.
, and
Paxson
,
D. E.
, 1997, “
A Numerical Investigation of Premixed Combustion in Wave Rotors
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
119
(
3
), pp.
668
675
.
186.
Nalim
,
M. R.
, 2000, “
Longitudinally Stratified Combustion in Wave Rotors
,”
J. Propul. Power
0748-4658,
16
(
6
), pp.
1060
1068
.
187.
Hendricks
,
R. C.
,
Wilson
,
J.
,
Wu
,
T.
, and
Flower
,
R.
, 1997, “
Bidirectional Brush Seals
,” ASME Paper 97-GT-256.
188.
Hendricks
,
R. C.
,
Wilson
,
J.
,
Wu
,
T.
,
Flower
,
R.
, and
Mullen
,
R. L.
, 1997, “
Bidirectional Brush Seals – Post-Test Analysis
,” NASA TM-107501.
189.
Hendricks
,
R. C.
,
Wilson
,
J.
,
Wu
,
T.
, and
Flower
,
R.
, 1998, “
Two-Way Brush Seals Catch a Wave
,”
Journal of Mechanical Engineering
,
120
(
11
), pp.
78
80
.
190.
Zauner
,
E.
, and
Spinnier
,
F.
, 1994, “
Operational behavior of a Pressure Wave Machine with Constant Volume Combustion
,” ABB Technical Report.
191.
Keller
,
J.
, 1993, “
Method for Preparing the Working Gas in a Gas Turbine Installation
,” U.S. Patent 5,197,276.
192.
Bilgin
,
M.
,
Keller
,
J. J.
, and
Breidenthal
,
R. E.
, 1998, “
Ignition and Flame Propagation Process with Rotating Hot Jets in a Simulated Wave Engine Test Cell
,” AIAA Paper 98-3399.
193.
Bilgin
,
M.
, 1998, “
Stationary and Rotating Hot Jet Ignition Flame Propagation In a Premixed Cell
,” Ph.D. thesis, University of Washington, Seattle, Washington.
194.
Akbari
,
P.
,
Baronia
,
D.
, and
Nalim
,
M. R.
, 2006, “
Single-Tube Simulation of a Semi-Intermittent Pressure-Gain Combustor
,” ASME Paper GT2006-91061.
195.
Gegg
,
S.
, and
Snyder
,
P. H.
, 1998, “
Aerodynamic Design of a Wave Rotor to High Pressure Turbine Transition Duct
,” AIAA Paper 98-3249.
196.
Weber
,
K.
, and
Snyder
,
P. H.
, 1998, “
Wave Rotor to Turbine Transition Duct Flow Analysis
,” AIAA Paper 98-3250.
197.
Snyder
,
P. H.
, 2002, “
Pulse Detonation Engine Wave Rotor
,” U.S. Patent 6449939.
198.
Snyder
,
P. H.
,
Alparslan
,
B.
, and
Nalim
,
M. R.
, 2002, “
Gas Dynamic Analysis of the Constant Volume Combustor, A Novel Detonation Cycle
,” AIAA paper 2002-4069.
199.
Smith
,
C. F.
,
Snyder
,
P. H.
,
Emmerson
,
C. W.
, and
Nalim
,
M. R.
, 2002, “
Impact of the Constant Volume Combustor on a Supersonic Turbofan Engine
,” AIAA Paper 2002-3916.
200.
Lear
,
W. E.
, and
Candler
,
G.
, 1993, “
Direct Boundary Value Solution of Wave Rotor Flow Fields
,” AIAA Paper 93-0483.
201.
Lear
,
W. E.
, and
Candler
,
G.
, 1993, “
Analysis of the Accuracy of Wave Rotor Boundary Conditions Using a Novel Computational Method
,” AIAA Paper 93-2524.
202.
Lear
,
W. E.
, and
Kielb
,
R. P.
, 1996, “
The Effect of Blade Angle Design Selection on Wave-Turbine Engine Performance
,” ASME Paper 96-GT-259.
203.
Hoxie
,
S. S.
,
Lear
,
W. E.
, and
Micklow
,
G. J.
, 1998, “
A CFD Study of Wave Rotor Losses Due to the Gradual Opening of Rotor Passage Inlets
,” AIAA Paper 98-3253.
204.
Fatsis
,
A.
, and
Ribaud
,
Y.
, 1999, “
Thermodynamic Analysis of Gas Turbines Topped with Wave Rotors
,”
Aerosp. Sci. Technol.
1270-9638,
3
(
5
), pp.
293
299
.
205.
Jones
,
S. M.
, and
Welch
,
G. E.
, 1996, “
Performance Benefits for Wave Rotor-Topped Gas Turbine Engines
,” ASME Paper 96-GT-075.
206.
Fatsis
,
A.
, and
Ribaud
,
Y.
, 1998, “
Preliminary Analysis of the Flow Inside a Three-Port Wave Rotor by Means of a Numerical Model
,”
Aerosp. Sci. Technol.
1270-9638,
2
(
5
), pp.
289
300
.
207.
Nalim
,
M. R.
, 2003, “
Partitioned Multi-Channel Combustor
,” U.S. Patent 6526936.
208.
Pekkan
,
K.
, and
Nalim
,
M. R.
, 2003, “
Two-Dimensional Flow and NOX Emissions In Deflagrative Internal Combustion Wave Rotor Configurations
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
(
3
), pp.
720
733
.
209.
Pekkan
,
K.
, and
Nalim
,
M. R.
, 2002, “
Control of Fuel and Hot-Gas Leakage in a Stratified Internal Combustion Wave Rotor
,” AIAA Paper 2002-4067.
210.
Pekkan
,
K.
, and
Nalim
,
M. R.
, 2002, “
On Alternative Models for Internal Combustor Wave Rotor Simulation
,”
Proceedings of 2002 Technical Meeting of the Central State Section of the Combustion Institute
,
Knoxville
.
211.
Nalim
,
M. R.
, and
Jules
,
K.
, 1998, “
Pulse Combustion and Wave Rotors for High-Speed Propulsion Engines
,” AIAA Paper 98-1614.
212.
Nalim
,
M. R.
, 2002, “
Wave Rotor Detonation Engine
,” U.S. Patent 6460342.
213.
Kailasanath
,
K.
, 2003, “
Recent Developments in the Research on Pulse Detonation Engines
,”
AIAA J.
0001-1452,
14
(
2
), pp.
145
159
.
214.
Izzy
,
Z.
, and
Nalim
,
M. R.
, 2001, “
Rotary Ejector Enhanced Pulsed Detonation System
,” AIAA Paper 2001-3613.
215.
Izzy
,
Z.
, and
Nalim
,
M. R.
, 2002, “
Wave Fan and Rotary-Ejector Pulsed Performance Prediction
,” AIAA Paper 2002-4068.
216.
Snyder
,
P.
,
Alparslan
,
B.
, and
Nalim
,
M. R.
, 2004, “
Wave Rotor Combustor Test Rig Preliminary Design
,” ASME Paper IMECE2004-61795.
217.
Okamoto
,
K.
, and
Nagashima
,
T.
, 2003, “
A Simple Numerical Approach of Micro Wave Rotor Gasdynamic Design
,”
16th International Symposium on Airbreathing Engines
, Paper ISABE-2003-1213.
218.
Okamoto
,
K.
,
Nagashima
,
T.
, and
Yamaguchi
,
K.
, 2001, “
Rotor-Wall Clearance Effects upon Wave Rotor Passage Flow
,”
15th International Symposium on Airbreathing Engines
, Paper ISABE-2001-1222.
219.
Okamoto
,
K.
,
Nagashima
,
T.
, and
Yamaguchi
,
K.
, 2003, “
Introductory Investigation of Micro Wave Rotor
,” ASME Paper IGTC03-FR-302, Japan.
220.
Okamoto
,
K.
,
Nagashima
,
T.
, and
Yamaguchi
,
K.
, 2005, “
Design and Performance of a Micro Wave Rotor
,”
17th International Symposium on Airbreathing Engines
, Paper ISABE-2005-1270.
221.
Akbari
,
P.
, and
Müller
,
N.
, 2003, “
Performance Improvement of Small Gas Turbines Through Use of Wave Rotor Topping Cycles
,”
2003 International ASME/IGTI Turbo Exposition
, ASME Paper GT2003-38772.
222.
Akbari
,
P.
,
Nalim
,
M. R.
, and
Müller
,
N.
, 2006, “
Performance Enhancement of Microturbine Engines Topped with Wave Rotors
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
(
1
), pp.
190
202
.
223.
Akbari
,
P.
, and
Müller
,
N.
, 2003, “
Performance Investigation of Small Gas Turbine Engines Topped with Wave Rotors
,” AIAA-Paper 2003-4414.
224.
Dempsey
,
E.
,
Akbari
,
P.
,
Müller
,
N.
, and
Nalim
,
M. R.
, 2005, “
Optimum Applications of Four-Port Wave Rotors for Gas Turbines Enhancement
,”
17th International Symposium on Air Breathing Engines
, ISABE Paper 2005–1214.
225.
Akbari
,
P.
, and
Müller
,
N.
, 2003, “
Preliminary Design Procedure for Gas Turbine Topping Reverse-Flow Wave Rotors
,” ASME Paper IGTC03-FR-301.
226.
Akbari
,
P.
, and
Müller
,
N.
, 2003, “
Gas Dynamic Design Analyses of Charging Zone for Reverse-Flow Pressure Wave Superchargers
,” ASME Paper ICES2003-690.
227.
Akbari
,
P.
, 2004, “
Performance Prediction and Preliminary Design of Wave Rotors Enhancing Gas Turbine Cycles
,” Ph.D. thesis, Michigan State University, E. Lansing, MI.
228.
Akbari
,
P.
,
Kharazi
,
A. A.
, and
Müller
,
N.
, 2003, “
Utilizing Wave Rotor Technology to Enhance the Turbo Compression in Power and Refrigeration Cycles
,” ASME Paper IMECE2003-44222.
229.
Kharazi
,
A. A.
,
Akbari
,
P.
, and
Müller
,
N.
, 2004, “
An Application of Wave Rotor Technology for Performance Enhancement of R718 Refrigeration Cycles
,” AIAA Paper 2004-5636.
230.
Kharazi
,
A. A.
,
Akbari
,
P.
, and
Müller
,
N.
, 2004, “
Performance Benefits of R718 Turbo-Compression Cycles Using a 3-Port Condensing Wave Rotors
,” ASME Paper IMECE2004-60992.
231.
Kharazi
,
A. A.
,
Akbari
,
P.
, and
Müller
,
N.
, 2005, “
Preliminary Study of a Novel R718 Compression Refrigeration Cycle Using a 3-Port Condensing Wave Rotor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
(
3
), pp.
539
544
.
232.
Iancu
,
F.
,
Akbari
,
P.
, and
Müller
,
N.
, 2004, “
Feasibility Study of Integrating Four-Port Wave Rotors into Ultra-Micro Gas Turbines
,” AIAA Paper 2004-3581.
233.
Iancu
,
F.
,
Piechna
,
J.
,
Dempsey
,
E.
, and
Müller
,
N.
, 2005, “
Ultra-Micro Wave Rotor Investigations
,”
5th International Workshop on Micro Nanotechnology for Power Generation and Energy Conversion Application
,
PowerMEMS, Tokyo
.
234.
Iancu
,
F.
,
Piechna
,
J.
,
Dempsey
,
E.
, and
Müller
,
N.
, 2005, “
The Ultra-Micro Wave Rotor Research at Michigan State University
,”
2nd International Symposium on Innovative Aerial/Space Flyer Systems
,
Tokyo
.
235.
Iancu
,
F.
,
Piechna
,
J.
, and
Müller
,
N.
, 2005, “
Numerical Solutions for Ultra-Micro Wave Rotors
,” AIAA Paper 2005-5034.
236.
Piechna
,
J.
,
Akbari
,
P.
,
Iancu
,
F.
, and
Müller
,
N.
, 2004, “
Radial-Flow Wave Rotor Concepts, Unconventional Designs and Applications
,” ASME Paper IMECE2004-59022.
237.
Piechna
,
J.
, 2005, “
The Micro Jet Wave Engine Idea
,”
2nd International Symposium on Innovative Aerial/Space Flyer Systems
,
Tokyo
.
238.
Frąckowiak
,
M.
,
Iancu
,
F.
,
Potrzebowski
,
A.
,
Akbari
,
P.
,
Müller
,
N.
, and
Piechna
,
J.
, 2004, “
Numerical Simulation of Unsteady-Flow Processes in Wave Rotors
,” ASME Paper IMECE2004-60973.
239.
Iancu
,
F.
, 2005, “
Integration of a Wave Rotor to an Ultra-Micro Gas Turbine (UμGT)
,” Ph.D. thesis, Michigan State University, E. Lansing, MI.
240.
Akbari
,
P.
, and
Müller
,
N.
, 2005, “
Wave Rotor Research Program at Michigan State University
,” AIAA Paper 2005-3844.
241.
Piechna
,
J.
, 2003, “
Autonomous Pressure Wave Compressor Device
,” International Gas Turbine Congress, ASME Paper IGTC03-FR-305, Japan.
You do not currently have access to this content.