This paper deals with the pressure supply fluctuations that occur in the fuel rail and in the injector on the immediate upstream side of the atomizer. It has been experimentally demonstrated that this has a considerable effect on the instantaneous mass flow and spray velocity thus affecting the spray hard-core structure and the atomization process. Moreover, considering the oscillatory nature of the phenomenon, the effects on a given spray can change from one injection to the other (in modern multijet systems) and from one engine cycle to the next. The needed computing time and the uncertainty related to a detailed simulation of the injection system fluid dynamics would be unacceptable in a multidimensional computational code. Therefore a simplified model able to predict fuel pressure supply fluctuations on the upstream side of the injector has been developed and is described in this paper. The model is validated and calibrated by comparing numerical results with available experimental data. Some numerical results on a fuel spray injected into a vessel at constant pressure are finally presented, in order to quantify the impact of a given level of pressure fluctuations on fuel spray characteristics.

1.
Stumpp
,
G.
, and
Ricco
,
M.
, 1996, “
Common Rail—An Attractive Fuel Injection System for Passenger Car DI Diesel Engines
,” SAE Paper No. 960870.
2.
Boehner
,
W.
, and
Hummel
,
K.
, 1997, “
Common Rail System (CR-System) for Commercial Diesel Vehicles
,” SAE Paper No. 970345.
3.
Arai
,
M.
,
Hiroyasu
,
H.
,
Shimizu
,
M.
, and
Tabata
,
M.
, 1984, “
Disintegrating Process and Spray Characterization of Fuel Jet Injected by a Diesel Nozzle
,” SAE Paper No. 840275.
4.
Huh
,
K.
, and
Gosman
,
A. D.
, 1991, “
A Phenomenological Model of Diesel Spray Atomization
,”
Proceedings of the International Conference on Multiphase Flows
,
Tsukuba
, Japan.
5.
Hiroyasu
,
H.
, and
Kadota
,
T.
, 1976, “
Evaporation of a Single Droplet at Elevated Pressures and Temperatures
,”
Bull. JSME
0021-3764,
19
(
138
), pp.
1515
1521
.
6.
Rocco
,
V.
, 1993, “
Results of Quasi-Steady Evaporation Model Applied to Multi-Dimensional D. I. Diesel Combustion Simulation
,” SAE Paper No. 930071.
7.
Kong
,
S.-C.
, and
Reitz
,
R. D.
, 1993, “
Multidimensional Modeling of Diesel Ignition and Combustion Using a Multistep Kinetic Model
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
101
, pp.
781
789
.
8.
Halstead
,
M. P.
,
Kirsch
,
L. J.
, and
Quinn
,
C. P.
, 1977, “
The Autoignition of Hydrocarbon Fuels at High Temperatures and Pressures—Fitting of a Mathematical Model
,”
Combust. Flame
0010-2180,
30
, pp.
45
60
.
9.
Kong
,
S.-C.
,
Han
,
Z.
, and
Reitz
,
R. D.
, 1995, “
The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation
,” SAE Paper No. 950278.
10.
Ahlin
,
K.
, 2000, “
Modelling of Pressure Waves in the Common Rail Diesel Injection System
,” Masters thesis, LiTH-ISY-EX-3081, Linköping Universitet, Linköping.
11.
Digesu
,
P.
,
Ficarella
,
A.
,
La Forgia
,
D.
,
Bruni
,
G.
, and
Ricco
,
M.
, 1994, “
Diesel Electro-Injector: A Numerical Simulation Code
,” SAE Paper No. 940193.
12.
Bianchi
,
G. M.
,
Pelloni
,
P.
,
Filicori
,
F.
, and
Tannini
,
G.
, 2000, “
Optimization of the Solenoid Valve Behaviour in Common-Rail Injection Systems
,”
J. Fuels Lubr.
, vol.
109
.
13.
Bianchi
,
G. M.
,
Falfari
,
S.
,
Parlotto
,
M.
, and
Osbat
,
G.
, 2003, “
Advanced Modeling of Common Rail Injector Dynamics and Comparison With Experiments
,” SAE Paper No. 2003-01-0006.
14.
Kolade
,
O. B.
,
Morel
,
T.
, and
Kong
,
S. C.
, 2004, “
Coupled 1-D∕3-D Analysis of Fuel Injection and Diesel Engine Combustion
,” SAE Paper No. 2004-01-0928.
15.
Rothrock
,
A. M.
, 1931, “
Pressure Fluctuations in a Common-Rail Fuel Injection System
,” NACA Report No. 363, pp.
669
678
.
16.
Pontoppidan
,
M.
,
Ausiello
,
F.
,
Ubertini
,
S.
, and
Bella
,
G.
, 2004, “
Study of the Impact of the Spray Shape Stability and the Combustion Process of Supply Pressure Fluctuations in CR-Diesel Injectors
,” SAE Paper No. 2004-01-0023.
17.
Ubertini
,
S.
,
Mariani
,
F.
, and
Postrioti
,
L.
, 2004, “
Experimental Validation of a Spray Breakup Model in High Pressure Ambient Conditions
,”
Selected Papers From the THIESEL 2002
,
Springer-Verlag
, Berlin, pp.
61
86
.
18.
Bella
,
G.
,
Rocco
,
V.
, and
Ubertini
,
S.
, 2003, “
Combustion and Spray Simulation of a DI Turbocharged Diesel Engine
,”
J. Engines
,
2002
, pp.
2549
2565
.
19.
Pontoppidan
,
M.
,
Ausiello
,
F.
,
Bella
,
G.
, and
Ubertini
,
S.
, 2003, “
Study of the Impact of the Combustion Process of Injector Nozzle Layout Creating Enhancing Spray Secondary Break-up
,” SAE Paper No. 2003-01-0706.
20.
Sarre
,
C. von K.
,
Kong
,
S. C.
, and
Reitz
,
R. D.
, 1999, “
Modeling the Effects of Injector Nozzle Geometry on Diesel Sprays
,” SAE Paper No. 1999-01-0912.
21.
Arcoumanis
,
C.
,
Flora
,
H.
,
Gaivaises
,
M.
,
Kampanis
,
M.
, and
Horrocks
,
R.
, 1999, “
Investigations of Cavitation in a Vertical Multi-Hole Injector
,” SAE Paper No. 1999-01-0524.
22.
Chaves
,
H.
,
Knapp
,
M.
,
Kubitzek
,
A.
,
Obermeier
,
F.
, and
Schneider
,
T.
, 1995, “
Experimental Study of Cavitation in the Nozzle Hole of Diesel Injectors Using Transparent Nozzles
,” SAE Paper No. 950290.
23.
Reitz
,
R. D.
, and
Diwakar
,
R.
, 1987, “
Structure of High Pressure Fuel Sprays
,” SAE Paper No. 870598.
24.
Tanner
,
F. X.
, 1997, “
Liquid Jet Atomization and Droplet Breakup Modelling of Non-Evaporating Diesel Fuel Sprays
,” SAE Paper No. 970050.
25.
O’Rourke
,
P. J.
, and
Amsden
,
A. A.
, 1987, “
The Tab Method for Numerical Calculation of Spray Droplet Breakup
,” SAE Paper No. 872089.
26.
Ibrahim
,
E. A.
,
Yang
,
H. Q.
, and
Przekwas
,
A. J.
, 1993, “
Modeling of Spray Droplets Deformation and Breakup
,”
J. Propul. Power
0748-4658,
9
, pp.
651
654
.
27.
Patterson
,
M. A.
, and
Reitz
,
R.
, 1998, “
Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission
,” SAE Paper No. 980131.
You do not currently have access to this content.