Two-dimensional images of OH fluorescence, polycyclic aromatic hydrocarbons (PAHs) fluorescence, and laser-induced incandescence (LII) from soot were measured in a sooting diffusion flame. To obtain an accurate OH fluorescence image, two images were taken with the laser wavelength tuned to (“on”) and away from (“off”) the OH absorption line. An accurate OH fluorescence image was obtained by subtracting the off-resonance image from the on-resonance image. For the PAH fluorescence and LII measurements, temporally resolved measurements were used to obtain the individual images; the LII image was obtained by detecting the LII signal after the PAH fluorescence radiation had stopped and the PAH fluorescence image was obtained by subtracting the LII image from the simultaneous image of PAH fluorescence and LII. Based on the obtained images, the relative location of OH, PAH, and soot in the flame was discussed in detail. To investigate the PAH size distribution in a sooting flame using LIF, an estimation strategy for PAH size is proposed. Emission spectra were measured at several heights in the flame using a spectrograph. Since the emission wavelength of PAH fluorescence shifts toward longer wavelengths with increasing PAH size, the main PAH components in the emission spectra could be estimated. The results suggest that PAH grows and the type of PAH changes as the soot inception region was approached. Near the soot inception region, we estimated that the PAHs, which have over 16 carbon atoms, mainly constituted the emission spectrum.

1.
Bockhorn
,
H.
, 1994,
Soot Formation in Combustion: Mechanisms and Models
,
Springer-Verlag
, Berlin.
2.
Calcote
,
H. F.
, 1981, “
Mechanisms of Soot Nucleation in Flames—A Critical Review
,”
Combust. Flame
0010-2180,
42
, pp.
215
242
.
3.
Richter
,
H.
, and
Howard
,
J. B.
, 2000, “
Formation of Polycyclic Aromatic Hydrocarbons and Their Growth to Soot—a Review of Chemical Reaction Pathways
,”
Prog. Energy Combust. Sci.
0360-1285,
26
, pp.
565
608
.
4.
Vander
Wal
,
R. L.
, 1996, “
Soot Precursor Material: Visualization via Simultaneous LIF-LII and Characterization via TEM
,”
Proc. Combust. Inst.
,
26
, pp.
2269
2275
.
5.
Frenklach
,
M.
, 1996, “
On Surface Growth Mechanism of Soot Particles
,”
Proc. Combust. Inst.
,
26
, pp.
2285
2293
.
6.
Melton
,
T. R.
,
Inal
,
F.
, and
Senkan
,
S. M.
, 2000, “
The Effects of Equivalence Ratio on the Formation of Polycyclic Aromatic Hydrocarbons and Soot in Premixed Ethane Flames
,”
Combust. Flame
0010-2180,
121
, pp.
671
678
.
7.
Wen
,
Z.
,
Yun
,
S.
,
Thomson
,
M. J.
, and
Lightstone
,
M. F.
, 2003, “
Modeling Soot Formation in Turbulent Kerosene∕Air Jet Diffusion Flames
,”
Combust. Flame
0010-2180,
135
, pp.
323
340
.
8.
Homann
,
K.-H.
, and
Wagner
,
H. Gg.
, 1967, “
Some New Aspects of the Mechanism of Carbon Formation in Premixed Flames
,”
Proc. Combust. Inst.
,
11
, pp.
371
379
.
9.
Fialkov
,
A. B.
,
Dennebaum
,
J.
, and
Homann
,
K.-H.
, 2001, “
Large Molecules, Ions, Radicals, and Small Soot Particles in Fuel-Rich Hydrocarbon Flames, Part V: Positive Ions of Polycyclic Aromatic Hydrocarbons (PAH) in Low-Pressure Premixed Flames of Benzene and Oxygen
,”
Combust. Flame
0010-2180,
125
, pp.
763
777
.
10.
Bittner
,
J. D.
, and
Howard
,
J. B.
, 1981, “
Composition Profiles and Reaction Mechanisms in a Near-Sooting Premixed Benzene∕Oxygen∕Argon Flame
,”
Proc. Combust. Inst.
,
18
, pp.
1105
1116
.
11.
Quay
,
B.
,
Lee
,
T.-W.
,
Ni
,
T.
, and
Santoro
,
R. J.
, 1994, “
Spatially Resolved Measurements of Soot Volume Fraction Using Laser-Induced Incandescence
,”
Combust. Flame
0010-2180,
97
, pp.
384
392
.
12.
Cignoli
,
F.
,
Benecchi
,
S.
, and
Zizak
,
G.
, 1994, “
Time Delayed Detection of Laser-Induced Incandescence for the Two-Dimensional Visualization of Soot in Flames
,”
Appl. Opt.
0003-6935,
33
, pp.
5778
5782
.
13.
Bengtsson
,
P.-E.
, and
Aldén
,
M.
, 1995, “
Soot-Visualization Strategies Using Laser Techniques, Laser-Induced Fluorescence in C2 from Laser-Vaporized Soot and Laser-Induced Soot Incandescence
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
60
, pp.
51
59
.
14.
Allouis
,
C.
,
Beretta
,
F.
, and
D’Alessio
,
A.
, 2003, “
Sizing Soot and Micronic Carbonaceous Particle in Spray Flames Based on Time Resolved LII
,”
Exp. Therm. Fluid Sci.
0894-1777,
27
, pp.
455
463
.
15.
Snelling
,
D. R.
,
Liu
,
F.
,
Smallwood
,
G. J.
, and
Gülder
,
Ö. L.
, 2004, “
Determination of the Soot Absorption Function and Thermal Accommodation Coefficient Using Low-Fluence LII in a Laminar Coflow Ethylene Diffusion Flame
,”
Combust. Flame
0010-2180,
136
, pp.
180
190
.
16.
Dec
,
J. E.
,
zur Loye
,
A. O.
, and
Siebers
,
D. L.
, 1991, “
Soot Distribution in a D. I. Diesel Engine Using 2-D Laser-Induced Incandescence Imaging
,” SAE Paper No. 910224, Society of Automotive Engineers, Warrendale, PA.
17.
Geitlinger
,
H.
,
Streibel
,
Th.
,
Suntz
,
R.
, and
Bockhorn
,
H.
, 1999, “
Statistical Analysis of Soot Volume Fractions, Particle Number Densities and Particle Radii in a Turbulent Diffusion Flame
,”
Combust. Sci. Technol.
0010-2202,
149
, pp.
115
134
.
18.
Crua
,
C.
,
Kennaird
,
A. A.
, and
Heikal
,
M. R.
, 2003, “
Laser-Induced Incandescence Study of Diesel Soot Formation in a Rapid Compression Machine at Elevated Pressures
,”
Combust. Flame
0010-2180,
135
, pp.
475
488
.
19.
Pickett
,
L. M.
, and
Siebers
,
D. L.
, 2004, “
Soot in Diesel Fuel Jets: Effects of Ambient Temperature, Ambeint Density, and Injection Pressure
,”
Combust. Flame
0010-2180,
138
, pp.
114
135
.
20.
Berlman
,
I. B.
, 1965,
Handbook of Fluorescence Spectra of Aromatic Molecules
,
Academic Press
, New York.
21.
Petarca
,
L.
, and
Marconi
,
F.
, 1989, “
Fluorescence Spectra and Polycyclic Aromatic Species in a N-Heptane Diffusion Flame
,”
Combust. Flame
0010-2180,
78
, pp.
308
325
.
22.
Ossler
,
F.
,
Metz
,
T.
, and
Aldén
,
M.
, 2001, “
Picosecond Laser-Induced Fluorescence from Gas-Phase Polycyclic Aromatic Hydrocarbons at Elevated Temperatures., I. Cell Measurements
,”
Appl. Phys. B: Lasers Opt.
0946-2171,
72
, pp.
465
478
.
23.
Chi
,
Z.
,
Cullum
,
B. M.
,
Stokes
,
D. L.
,
Mobley
,
J.
,
Miller
,
G. H.
,
Hajaligol
,
M. R.
, and
Vo-Dinh
,
T.
, 2001, “
Laser-Induced Fluorescence Studies of Polycyclic Aromatic Hydrocarbons (PAH) Vapors at High Temperatures
,”
Spectrochim. Acta, Part A
0584-8539,
57
, pp.
1377
1384
.
24.
Smyth
,
K. C.
,
Miller
,
J. H.
,
Dorfman
,
R. C.
,
Mallard
,
W. G.
, and
Santoro
,
R. J.
, 1985, “
Soot Inception in a Methane∕Air Diffusion Flame as Characterized by Detailed Species Profiles
,”
Combust. Flame
0010-2180,
62
, pp.
157
181
.
25.
Smyth
,
K. C.
,
Shaddix
,
C. R.
, and
Everest
,
D. A.
, 1997, “
Aspects of Soot Dynamics as Revealed by Measurements of Broadband Fluorescence and Flame Luminosity in Flickering Diffusion Flames
,”
Combust. Flame
0010-2180,
111
, pp.
185
207
.
26.
Vander Wal
,
R. L.
,
Jensen
,
K. A.
, and
Choi
,
M. Y.
, 1997, “
Simultaneous Laser-Induced Emission of Soot and Polycyclic Aromatic Hydrocarbons Within a Gas-Jet Diffusion Flame
,”
Combust. Flame
0010-2180,
109
, pp.
399
414
.
27.
Bradley
,
D.
, and
Matthews
,
K. J.
, 1968, “
Measurement of High Gas Temperatures with Fine Wire Thermocouples
,”
J. Mech. Eng. Sci.
0022-2542,
10
, pp.
299
305
.
28.
Andresen
,
P.
,
Bath
,
A.
,
Gröger
,
W.
,
Lülf
,
H. W.
,
Meijer
,
G.
, and
ter Meulen
,
J. J.
, 1982, “
Laser-Induced Fluorescence with Tunable Excimer Lasers as a Possible Method for Instantaneous Temperature Field Measurements at High Pressures: Checks with an Atmospheric Flame
,”
Appl. Opt.
0003-6935,
27
, pp.
365
378
.
29.
Puri
,
R.
,
Santoro
,
R. J.
, and
Smyth
,
K. C.
, 1994, “
The Oxidation of Soot and Carbon Monoxide in Hydrocarbon Diffusion Flames
,”
Combust. Flame
0010-2180,
97
, pp.
125
144
.
30.
Shaddix
,
C. R.
, and
Smyth
,
K. C.
, 1996, “
Laser-Induced Incandescence Measurements of Soot Production in Steady and Flickering Methane, Propane, and Ethylene Diffusion Flames
,”
Combust. Flame
0010-2180,
107
, pp.
418
452
.
31.
Bryce
,
D. J.
,
Ladommatos
,
N.
, and
Zhao
,
H.
, 2000, “
Quantitative Investigation of Soot Distribution by Laser-Induced Incandescence
,”
Appl. Opt.
0003-6935,
39
, pp.
5012
5022
.
32.
Beretta
,
F.
,
Cincotti
,
V.
,
D’Alessio
,
A.
, and
Menna
,
P.
, 1985, “
Ultraviolet and Visible Fluorescence in the Fuel Pyrolysis Regions of Gaseous Diffusion Flames
,”
Combust. Flame
0010-2180,
61
, pp.
211
218
.
33.
Ware
,
W. R.
, and
Cunningham
,
P. T.
, 1965, “
Lifetime and Quenching of Anthracence Fluorescence in the Vapor Phase
,”
J. Chem. Phys.
0021-9606,
43
, pp.
3826
3831
.
34.
Ohta
,
N.
, and
Baba
,
H.
, 1982, “
Vibronic-Level Dependence of Radiative and Nonradiative Processes in Naphthelene Vapor
,”
J. Chem. Phys.
0021-9606,
76
, pp.
1654
1663
.
35.
Coe
,
D. S.
, and
Steinfeld
,
J. I.
, 1980, “
Fluorescence Excitation and Emission Spectra of Polycyclic Aromatic Hydrocarbons at Flame Temperatures
,”
Chem. Phys. Lett.
0009-2614,
76
, pp.
485
489
.
36.
Baba
,
H.
,
Nakajima
,
A.
,
Aoi
,
M.
, and
Chihara
,
K.
, 1971, “
Fluorescence from the Second Excited Singlet State and Radiationless Processes in Pyrene Vapor
,”
J. Chem. Phys.
0021-9606,
55
, pp.
2433
2438
.
37.
Chi
,
Z.
,
Cullum
,
B. M.
,
Stokes
,
D. L.
,
Mobley
,
J.
,
Miller
,
G. H.
,
Hajaligol
,
M. R.
, and
Vo-Dinh
,
T.
, 2001, “
High-Temperature Vapor Detection of Polycyclic Aromatic Hydrocarbon Fluorescence
,”
Fuel
0016-2361,
80
, pp.
1819
1824
.
38.
Hepp
,
H.
,
Siegmann
,
K.
, and
Sattler
,
K.
, 1995, “
New Aspects of Grows Mechanisms for Polycyclic Aromatic Hydrocarbons in Diffusion Flames
,”
Chem. Phys. Lett.
0009-2614,
233
, pp.
16
22
.
39.
Prado
,
G. P.
,
Lee
,
M. L.
,
Hites
,
R. A.
,
Hoult
,
D. P.
, and
Howard
,
J. B.
, 1997, “
Soot and Hydrocarbon Formation in a Turbulent Diffusion Flame
,”
Proc. Combust. Inst.
,
16
, pp.
649
661
.
You do not currently have access to this content.