The competition to deliver ultra low emitting vehicles at a reasonable cost is driving the automotive industry to invest significant manpower and test lab resources in the design optimization of increasingly complex exhaust aftertreatment systems. Optimization can no longer be based on traditional approaches, which are intensive in hardware use and lab testing. This paper discusses the extents and limitations of applicability of state-of-the-art mathematical models of catalytic converter performance. In-house software from the authors’ lab, already in use during the last decade in design optimization studies, updated with recent, important model improvements, is employed as a reference in this discussion. Emphasis is on the engineering methodology of the computational tools and their application, which covers quality assurance of input data, advanced parameter estimation procedures, and a suggested performance measure that drives the parameter estimation code to optimum results and also allows a less subjective assessment of model prediction accuracy. Extensive comparisons between measured and computed instantaneous emissions over full cycles are presented, aiming to give a good picture of the capabilities of state of the art engineering models of automotive catalytic converter systems.

1.
Farrauto
,
R. J.
, and
Heck
,
R. M.
,
1999
, “
Catalytic Converters: State of the Art and Perspectives
,”
Catal. Today
,
51
, pp.
351
360
.
2.
Koltsakis
,
G. C.
, and
Stamatelos
,
A. M.
,
1997
, “
Catalytic Automotive Exhaust Aftertreatment
,”
Prog. Energy Combust. Sci.
,
23
, pp.
1
37
.
3.
Oh
,
S. H.
, and
Cavendish
,
J. C.
,
1982
, “
Transients of Monolithic Catalytic Converters: Response to Step Changes in Feedstream Temperature as Related to Controlling Automobile Emissions
,”
Ind. Eng. Chem. Prod. Res. Dev.
,
21
, pp.
29
37
.
4.
Oh
,
S. H.
, and
Cavendish
,
J. C.
,
1985
, “
Mathematical Modeling of Catalytic Converter Light-off—Part II: Model Verification by Engine-Dynamometer Experiments
,”
AIChE J.
,
31
(
6
), pp.
935
942
.
5.
Oh
,
S. H.
, and
Cavendish
,
J. C.
,
1985
, “
Mathematical Modeling of Catalytic Converter Light-off—Part III: Prediction of Vehicle Exhaust Emissions and Parametric Analysis
,”
AIChE J.
,
31
(
6
), pp.
943
949
.
6.
Tischer
,
S.
,
Correa
,
C.
, and
Deutshmann
,
O.
,
2001
, “
Transient Three-Dimensional Simulation of a Catalytic Combustion Monolith Using Detailed Models for Heterogeneous and Homogeneous Reactions and Transport Phenomena
,”
Catal. Today
,
69
, pp.
57
62
.
7.
Pontikakis
,
G.
, and
Stamatelos
,
A.
,
2001
, “
Mathematical Modeling of Catalytic Exhaust Systems for EURO-3 and EURO-4 Emissions Standards
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
215
, pp.
1005
1015
.
8.
Young
,
L. C.
, and
Finlayson
,
B. A.
,
1976
, “
Mathematical Models of the Monolithic Catalytic Converter: Part I. Development of Model and Application of Orthogonal Collocation
,”
AIChE J.
,
22
(
2
), pp.
331
343
.
9.
Siemund
,
S.
,
Leclerc
,
J. P.
,
Schweich
,
D.
,
Prigent
,
M.
, and
Castagna
,
F.
,
1996
, “
Three-Way Monolithic Converter: Simulations Versus Experiments
,”
Chem. Eng. Sci.
,
51
(
15
), pp.
3709
3720
.
10.
Koltsakis
,
G. C.
,
Konstantinidis
,
P. A.
, and
Stamatelos
,
A. M.
,
1997
, “
Development and Application Range of Mathematical Models for Automotive 3-Way Catalytic Converters
,”
Appl. Catal., B
,
12
(
2-3
), pp.
161
191
.
11.
Chen, D. K. S., Bisset, E. J., Oh, S. H., and Van Ostrom, D. L., 1988, “A Three-Dimensional Model for the Analysis of Transient Thermal and Conversion Characteristics of Monolithic Catalytic Converters,” SAE paper 880282.
12.
Montreuil, C. N., Williams, S. C., and Adamczyk, A. A., 1992, “Modeling Current Generation Catalytic Converters: Laboratory Experiments and Kinetic Parameter Optimization—Steady State Kinetics,” SAE paper 920096.
13.
Dubien
,
C.
,
Schweich
,
D.
,
Mabilon
,
G.
,
Martin
,
B.
, and
Prigent
,
M.
,
1998
, “
Three-Way Catalytic Converter Modeling: Fast and Slow Oxidizing Hydrocarbons, Inhibiting Species and Steam-Reforming Reaction
,”
Chem. Eng. Sci.
,
53
(
3
), pp.
471
481
.
14.
Heck
,
R. H.
,
Wei
,
J.
, and
Katzer
,
J. R.
,
1976
, “
Mathematical Modeling of Monolithic Catalysts
,”
AIChE J.
,
22
(
3
), pp.
477
484
.
15.
Shamim
,
T.
,
Shen
,
H.
,
Sengupta
,
S.
,
Son
,
S.
, and
Adamczyk
,
A. A.
,
2002
, “
A Comprehensive Model to Predict Three-Way Catalytic Converter Performance
,”
J. Eng. Gas Turbines Power
,
124
(
2
), pp.
421
428
.
16.
Konstantinidis
,
P. A.
,
Koltsakis
,
G. C.
, and
Stamatelos
,
A. M.
,
1997
, “
Computer-Aided Assessment and Optimization of Catalyst Fast Light-off Techniques
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
211
, pp.
21
37
.
17.
Konstantinidis
,
P. A.
,
Koltsakis
,
G. C.
, and
Stamatelos
,
A. M.
,
1998
, “
The Role of CAE in the Design Optimization of Automotive Exhaust Aftertreatment Systems
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
212
, pp.
1
18
.
18.
Baba
,
N.
,
Ohsawa
,
K.
, and
Sugiura
,
S.
,
1996
, “
Analysis of Transient Thermal and Conversion Characteristics of Catalytic Converters During Warm-up
,”
JSAE Review of Automative Engineering
,
17
, pp.
273
279
.
19.
Schmidt, J., Waltner, A., Loose, G., Hirschmann, A., Wirth, A., Mueller, W., Van den Tillaart, J. A. A., Mussmann, L., Lindner, D., Gieshoff, J., Umehara, K., Makino, M., Biehn, K. P., and Kunz, A., 1999, “The Impact of High Cell Density Ceramic Substrates and Washcoat Properties on the Catalytic Activity of Three Way Catalysts,” SAE paper 1999-01-0272.
20.
Stamatelos
,
A. M.
,
Koltsakis
,
G. C.
, and
Kandylas
,
I. P.
,
1999
, “
Computergestu¨tzte Entwurf von Abgasnachbehandlungsystemen. Teil I. Ottomotor
,”
Motortech. Z.
,
MTZ 60
(2), pp.
116
124
.
21.
LTTE-University of Thessaly: CATRAN Catalytic Converter Modeling Software, User’s Guide, Version v4r2f. Volos, June 2003.
22.
Pontikakis, G. N., and Stamatelos, A. M., 2002, “Catalytic Converter Modeling: Computer-Aided Parameter Estimation by use of Genetic Algorithms” Proc. Inst. Mech. Eng., Part D: J. Automob. Eng., accepted for publication.
23.
Pontikakis, G., 2003, “Modeling, Reaction Schemes and Kinetic Parameter Estimation in Automotive Catalytic Converters and Diesel Particulate Filters,” Ph.D. thesis, Mechanical & Industrial Engineering Department, University of Thessaly, June 2003. http://www.mie.uth.gr/labs/ltte/pubs/PhD_G_Pont.pdf
24.
Zygourakis
,
K.
, and
Aris
,
R.
,
1983
, “
Multiple Oxidation Reactions and Diffusion in the Catalytic Layer of Monolith Reactors
,”
Chem. Eng. Sci.
,
38
(
5
), pp.
733
744
.
25.
Hoebink
,
J. H. B. J.
,
van Gemert
,
R. A.
,
van den Tillaart
,
J. A. A.
, and
Marin
,
G. B.
,
2000
, “
Competing Reactions in Three-Way Catalytic Converters: Modeling of the NOx Conversion Maximum in the Light-off Curves Under Net Oxidizing Conditions
,”
Chem. Eng. Sci.
,
55
(
9
), pp.
1573
1581
.
26.
Keren
,
I.
, and
Sheintuch
,
M.
,
2000
, “
Modeling and Analysis of Spatiotemporal Oscillatory Patterns During CO Oxidation in the Catalytic Converter
,”
Chem. Eng. Sci.
,
55
, pp.
1461
1475
.
27.
Voltz
,
S. E.
,
Morgan
,
C. R.
,
Liederman
,
D.
, and
Jacob
,
S. M.
,
1973
, “
Kinetic Study of Carbon Monoxide and Propylene Oxidation on Platinum Catalysts
,”
Ind. Eng. Chem. Prod. Res. Dev.
,
12
, pp.
294
301
.
28.
Young
,
L. C.
, and
Finlayson
,
B. A.
,
1976
, “
Mathematical Models of the Monolithic Catalytic Converter: Part I. Development of Model and Application of Orthogonal Collocation
,”
AIChE J.
,
22
(
2
), pp.
337
343
.
29.
Hayes
,
R. E.
, and
Kolaczkowski
,
S. T.
,
1994
, “
Mass and Heat Transfer Effects in Catalytic Monolith Reactors
,”
Chem. Eng. Sci.
,
46
(
21
), pp.
3587
3599
.
30.
Tanaka
,
M.
,
Tsujimoto
,
Y.
,
Miyazaki
,
T.
,
Warashina
,
M.
, and
Wakamatsu
,
S.
,
2001
, “
Pecularities of Volatile Hydrocarbons Emissions From Several Types of Vehicles in Japan
,”
Chemosphere-Global Change Science
,
3
(
2
), pp.
185
197
.
31.
Pattas
,
K. N.
,
Stamatelos
,
A. M.
,
Pistikopoulos
,
P. K.
,
Koltsakis
,
G. C.
,
Konstantinidis
,
P. A.
,
Volpi
,
E.
, and
Leveroni
,
E.
,
1994
, “
Transient Modeling of 3-Way Catalytic Converters,” SAE paper 940934
,
SAE Trans.
,
103
, pp.
565
578
.
32.
Koberstein, E., and Wannemacher, G., 1987, “The A/F Window With Three-Way Catalysts. Kinetic and Surface Investigations,” CAPOC, International Congress on Catalysis and Automotive Pollution Control, Brussels.
33.
Siemund
,
S.
,
Leclerc
,
J. P.
,
Schweich
,
D.
,
Prigent
,
M.
, and
Castagna
,
F.
,
1996
, “
Three Way Monolithic Converter: Simulations Versus Experiments
,”
Chem. Eng. Sci.
,
51
(
15
), pp.
3709
3720
.
34.
Heck
,
R. H.
,
Wei
,
J.
, and
Katzer
,
J. R.
,
1976
, “
Mathematical Modeling of Monolithic Catalysts
,”
AIChE J.
,
22
(
3
), pp.
477
484
.
35.
Zygourakis
,
K.
,
1989
, “
Transient Operation of Monolith Catalytic Converters: A Two-Dimensional Reactor Model and the Effects of Radially Nonuniform Flow Distributions
,”
Chem. Eng. Sci.
,
44
, pp.
2075
2086
.
36.
Jahn
,
R.
,
Snita
,
D.
,
Kubicek
,
M.
, and
Marek
,
M.
,
1997
, “
3-D Modeling of Monolith Reactors
,”
Catal. Today
,
38
, pp.
39
46
.
37.
Dubien, C., and Schweich, D., 1997, “Three Way Catalytic Converter Modeling. Numerical Determination of Kinetic Data,” in CAPOC IV, Fourth International Congress on Catalysis and Automotive Pollution Control, Brussels.
38.
Pontikakis
,
G. N.
,
Papadimitriou
,
C.
, and
Stamatelos
,
A. M.
,
2004
, “
Kinetic Parameter Estimation by Standard Optimization Methods in Catalytic Converter Modeling
,”
Chem. Eng. Commun.
,
91
, pp.
3
29
.
39.
Glielmo
,
L.
, and
Santini
,
S.
,
2001
, “
A Two-Time-Scale Infinite Adsorption Model of Three-Way Catalytic Converters During the Warm-Up Phase
,”
ASME J. Dyn. Syst., Meas., Control
,
123
, pp.
62
70
.
40.
Bates, D. M., and Watts, D. G., 1988, Nonlinear Regression Analysis and its Applications, Wiley, New York.
41.
Luenberger, D. G., 1989, Linear and Nonlinear Programming, Second Edition, Addison-Wesley, Reading, MA.
42.
Goldberg, D. E., 1989, Genetic Algorithms in Search Optimization, and Machine Learning, Addison-Wesley, Reading, MA.
43.
Emanuel Falkenauer, 1998, Genetic Algorithms and Grouping Problems, Wiley, New York.
44.
Konstantas
,
G.
, and
Stamatelos
,
A.
,
2004
, “
Quality Assurance of Exhaust Emissions Test Data
,”
Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
, ,
218
, pp.
901
914
.
45.
Votsmeier, M., Bog, T., Lindner, D., Gieshoff, J., Lox, E. S., and Kreuzer, T., 2002, “A System(atic) Approach Towards Low Precious Metal Three-Way Catalyst Application,” SAE paper 2002-01-0345.
You do not currently have access to this content.