Capturing the physics related to the processes occurring in the two-phase flow of a direct-injection diesel engine requires a highly sophisticated modeling approach. The representative interactive flamelet (RIF) model has gained widespread attention owing to its ability of correctly describing ignition, combustion, and pollutant formation phenomena. This is achieved by incorporating very detailed chemistry for the gas phase as well as for the soot particle growth and oxidation, without imposing any significant computational penalty. This study addresses the part load soot underprediction of the model, which has been observed in previous investigations. By assigning flamelets, which are exposed to the walls of the combustion chamber, with heat losses calculated in a computational fluid dynamics (CFD) code, predictions of the soot emissions in a small-bore direct-injection diesel engine are substationally improved. It is concluded that the experimentally observed emissions of soot may have their origin in flame quenching at the relatively cold combustion chamber walls.

1.
Peters, N., Mu¨ller, U. C., Pitsch, H., and Wan, Y. P., 1995, “Modellierung der Schadstoffbildung bei der dieselmotorischen Verbrennung,” 5th Symposium: The Working Process of the Internal Combustion Engine, Graz, Austria, Sept., pp. 51–67.
2.
Peters
,
N.
,
1984
, “
Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
10
, pp.
319
339
.
3.
Hasse, C., Barths, H., and Peters, N., 1999, “Modeling the Effect of Split Injection in Diesel Engines Using Representative Interactive Flamelets,” SAE Technical Paper 1990-01-3547.
4.
Pitsch, H., Barths, H., and Peters, N., 1996, “Three-Dimensional Modeling of NOx and Soot Formation in DI Diesel Engines Using Detailed Chemistry Based on the Interactive Flamelet Approach,” SAE Technical Paper 962057.
5.
Barths, H., Pitsch, H., and Peters, N., 1997, “Comparison of the Representative Interactive Flamelet Model and the Magnussen Model for Combustion and Pollutant Formation in DI Diesel Engine to Experiments,” Proceedings of the third International Conference on High Performance Computing in the Automotive Industry, M. Sheh, ed.
6.
Hergart, C., Barths, H., and Peters, N., 1999, “Modeling the Combustion Process in a Small-Bore Diesel Engine Using a Model Based on Representative Interactive Flamelets,” SAE Technical Paper 1999-01-3550.
7.
Schwarz, V., Ko¨nig, G., Dittrich, P., and Binder, K., 1999, “Analysis of Mixture Formation, Combustion and Pollutant Formation in HD Diesel Engines using Modern Optical Diagnostics and Numerical Simulation,” SAE Technical Paper 1999-01-3647.
8.
Miles, P. C., “The Influence of Swirl on HSDI Diesel Combustion at Moderate Speed and Load,” SAE Technical Paper 2000-01-1829.
9.
Pitsch, H., 1998, “Modellierung der Zu¨ndung und Schadstoffbildung bei der dieselmotorischen Verbrennung mit Hilfe eines interaktiven Flamelet-Modells,” Ph.D. thesis, Rheinisch-Westfa¨lische Technische Hochschule, Institut fu¨r Technische Mechanik, Feb.
10.
Pitsch
,
H.
, and
Peters
,
N.
,
1998
, “
A Consistent Formulation for Non-Premixed Combustion Considering Differential Diffusion Effects
,”
Combust. Flame
,
114
, pp.
26
40
.
11.
Hubbard
,
G. L.
, and
Tien
,
C. L.
,
1978
, “
Infrared Mean Absorption Coefficient of Luminous Flames and Smoke
,”
ASME J. Heat Transfer
,
100
, pp.
235
239
.
12.
Mu¨ller, U. C., 1989, “Der Einflußvon Strahlungsverlusten auf die thermische NO-Bildung in laminaren CO—H2-Diffusionsflammen,” Diploma thesis, RWTH Aachen.
13.
Hergart, C., 2001, “Modeling Combustion and Soot Emissions in a Small-Bore Direct-Injection Diesel Engine,” Ph.D. thesis, Rheinisch-Westfa¨lische Technische Hochschule, Institut fu¨r Technische Mechanik.
14.
Jones
,
W. P.
, and
Whitelaw
,
J. H.
,
1982
, “
Calculation Methods for Turbulent Flows: A Review
,”
Combust. Flame
,
48
, p.
1
1
.
15.
Amsden, A. A., O’Rourke, P. J., and Butler, T. D., “KIVA-II: A Computer Program for Chemically Reactive Flows With Sprays,” Los Alamos National Labs., U.S.A.
16.
Amsden, A. A., “A KIVA Program with Block-Structured Mesh for Complex Geometries,” Los Alamos National Labs., U.S.A.
17.
Amsden, A. A., “A Block-Structured KIVA Program for Engines with Vertical or Canted Valves,” Los Alamos National Labs., U.S.A.
18.
Amsden, A. A., “KIVA-3V, Release 2, Improvements to KIVA-3V,” Los Alamos National Labs., U.S.A.
19.
Barths, H., Hasse, C., Bikas, G., and Peters, N., 2000, “Simulation of Combustion in DI Diesel Engines Using an Eulerian Particle Flamelet Model,” Twenty-Eighth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, submitted for publication.
20.
Girimaji
,
S. S.
,
1991
, “
Assumed β-pdf Model for Turbulent Mixing: Validation and Extension to Multiple Scalar Mixing
,”
Combust. Sci. Technol.
,
78
, p.
177
177
.
21.
Baulch
,
D. L.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Frank
,
P.
,
Hayman
,
Th. Just
,
Kerr
,
J. A.
,
Murrells
,
T.
,
Pilling
,
M. J.
,
Troe
,
J.
,
Walker
,
R. W.
, and
Warnatz
,
J.
,
1992
, “
Evaluated Kinetic Data for Combustion Modelling
,”
J. Phys. Chem. Ref. Data
,
21
, pp.
411
429
.
22.
Benson
,
S. W.
,
1981
,
Prog. Energy Combust. Sci.
,
7
, pp.
125
134
.
23.
Chevalier, C., Pitz, W. J., Warnatz, J., Westbrook, C. K., and Melenk, H., 1992, “Hydrocarbon Ignition: Automatic Generation of Reaction Mechanisms and Application to Modeling of Engine Knock,” Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 93–101.
24.
Shaddix, C. R., Brezinsky, K., and Glassman, I., 1992, “Oxidation of 1-Methylnaphthalene,” Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 683–690.
25.
Emdee
,
C. R.
,
Brezinsky
,
K.
, and
Glassman
,
I.
,
1992
, “
A Kinetic Model for the Oxidation of Toluene Near 1200 K
,”
J. Phys. Chem.
,
96
, pp.
2151
2161
.
26.
Pitsch, H., and Peters, N., 1995, “Reduced Kinetics of Multicomponent Fuels to Describe the Auto-Ignition, Flame Propagation and Post Flame Oxidation of Gasoline and Diesel Fuels,” Periodic Report, project FK.2, IDEA-EFFECT, 6th period 01.07.95-31.12.95.
27.
Hewson, J. C., and Bollig, M., 1996, “Reduced Mechanisms for NOx Emissions From Hydrocarbon Diffusion Flames,” Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA.
28.
Frenklach
,
M.
, and
Warnatz
,
J.
,
1987
, “
Detailed Modeling of PAH Profiles in a Sooting Low-Pressure Acetylene Flame
,”
Combust. Sci. Technol.
,
51
, p.
265
265
.
29.
Miller
,
J. A.
, and
Melius
,
C. F.
,
1992
, “
Kinetic and Thermodynamic Issues in the Formation of Aromatic Compounds in Flames of Aliphatic Fuels
,”
Combust. Flame
,
91
, pp.
21
39
.
30.
Frenklach
,
M.
,
1985
,
Chem. Eng. Sci.
,
40
(
10
), pp.
1843
1849
.
31.
Frenklach
,
M.
, and
Harris
,
S. J.
,
1987
,
J. Colloid Interface Sci.
,
118
, pp.
252
261
.
32.
Mauß, F., 1998, “Entwicklung eines kinetischen Modells der Rußbildung mit schneller Polymerization,” Ph.D. thesis, Rheinisch-Westfa¨lische Technische Hochschule, Institut fu¨r Technische Mechanik, Feb.
33.
Barths
,
H.
,
Pitsch
,
H.
, and
Peters
,
N.
,
1999
, “
Three-Dimensional Simulation of DI Diesel Combustion and Pollutant Formation Using a Two-Component Reference Fuel
,”
Oil Gas Sci. Technol.
,
54
, pp.
233
244
.
34.
Muntean, G. G., 1999, “A Theoretical Model for the Correlation of Smoke Number to Dry Particulate Concentration in Diesel Exhaust,” SAE Technical Paper 1999-01-0515.
35.
Dec, J. E., and Tree, A. R., 2001, “Diffusion-Flame/Wall Interactions in a Heavy-Duty DI Diesel Engine,” SAE Technical Paper 2001-01-1295.
36.
Peters, N., 2000, Turbulent Combustion, Cambridge University Press, Cambridge, UK.
37.
Peters, N., and Janicka, J., 1982, “Prediction of Turbulent Jet Diffusion Flame Lift-Off Using a PDF Transport Equation,” Nineteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 367–374.
38.
Girimaji
,
S. S.
,
1992
, “
On the Modelling of Scalar Diffusion in Isotropic Turbulence
,”
Phys. Fluids
,
11
, Nov., pp.
2529
2537
.
You do not currently have access to this content.