To achieve high thermal efficiencies, 30 percent and higher, for small gas turbines a recuperator is mandatory. As the recuperator represents 25–30 percent of the overall machine cost, efforts are now being focused on establishing new low-cost recuperator concepts for gas turbine engines. In this paper the cross corrugated (CC), also called chevron pattern, heat transfer surface is reviewed to assess its thermal and hydraulic performance and compare it to some other candidate surfaces for a 50 kW microturbine. The surfaces may be categorized into three primary surface types and one plate-fin type. Design calculations of a recuperator heat transfer matrix using these surfaces enable direct comparison of the recuperator matrix volumes, weights and dimensions. It is concluded that the CC surface has great potential for use in recuperators of the future.

1.
McDonald, C. F., 2000, “Low Cost Recuperator Concept For Microturbine Applications,” ASME Paper 2000-GT-167.
2.
Oswald, J. I., Dawson, D. A., and Clawley, L. E., 1999, “A New Durable Gas Turbine Recuperator,” ASME Paper 99-GT-369.
3.
Antoine, H., 1997, “Echangeur de Chaleur Spirale,” European Patent EP 0798527 B1.
4.
Utriainen, E., and Sunde´n, B., 2001, “A Comparison of Some Heat Transfer Surfaces for Small Gas Turbine Recuperators,” ASME Paper 2001-GT-0474.
5.
Webb, R. L., 1994, Principles of Enhanced Heat Transfer, John Wiley and Sons, New York.
6.
Jacobi
,
A. M.
, and
Shah
,
R. K.
,
1995
, “
Heat Transfer Surface Enhancement Through the Use of Longitudinal Vortices: A Review of Recent Progress
,”
Exp. Therm. Fluid Sci.
,
11
, pp.
295
309
.
7.
Savostin
,
A. F.
, and
Tikhonov
,
A. M.
,
1970
, “
Investigation of the Characteristics of Plate-Type Heating Surfaces
,”
Teploenerg.
,
17
, No.
9
, pp.
75
78
.
8.
Kleeman, M., 1978, Auslegung Eines Neuartigen Kompakten Rekuperators, Doktor-Ingenieurs Genehmigte Dissertation, Technishen Hochschule Aachen.
9.
Fo¨rster, S., and Kleeman, M., 1978, “Compact Metallic and Ceramic Recuperator for Gas Turbines,” ASME Paper 78-GT-62.
10.
McDonald
,
C. F.
,
2000
, “
Low Cost Primary Surface Recuperator for Microturbines
,”
Journal of Applied Thermal Engineering
,
29
, pp.
471
497
.
11.
Stasiek
,
J.
,
Ciofalo
,
M.
, and
Collins
,
M. W.
,
1996
, “
Investigation of Flow and Heat Transfer in Corrugated Passages—I. Experimental Results
,”
Int. J. Heat Mass Transf.
,
39
, No.
1
, pp.
149
164
.
12.
Stasiek
,
J. A.
,
1998
, “
Experimental Studies of Heat Transfer and Fluid Flow Across Corrugated-Undulated Heat Exchanger Surfaces
,”
Int. J. Heat Mass Transf.
,
41
, Nos.
6–7
, pp.
899
914
.
13.
Ciofalo, M., Collins, M. W., and Stasiek, J. A., 1998, “Flow and Heat Transfer Predictions in Flow Passages of Air Preheaters: Assessment of Alternative Modeling Approaches,” Computer Simulations in Compact Heat Exchangers, B. Sunde´n and M. Faghri, eds., Computational Mechanics Publications.
14.
Utriainen, E., and Sunde´n, B., 2001, “Numerical Analysis of Laminar Flow in Corrugated Undulated Ducts,” Compact Heat Exchangers and Enhancement Technology for the Process Industries—2001, R. K. Shah, A. W. Deakin, H. Honda, and T. M. Rudy, eds., Begell House, New York.
15.
Campbell
,
J. F.
, and
Rohsenow
,
W. M.
,
1992
, “
Gas Turbine Regenerators: A Method for Selecting the Optimum Plate-Finned Surface Pair for Minimum Core Volume
,”
Int. J. Heat Mass Transf.
,
35
, No.
12
, pp.
3441
3450
.
16.
Kays, W. M., and London, A. L., 1984, Compact Heat Exchangers, McGraw-Hill, New York.
17.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1995
, “
Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
10
, pp.
171
180
.
18.
Utriainen, E., and Sunde´n, B., 2001, “A Numerical Investigation of Primary Surface Rounded Cross Wavy Ducts,” Heat and Mass Transfer-Wa¨rme- und Stoffubertragung, accepted for publication.
19.
Manglik, R. M., 1996, “Plate Heat Exchangers for Process Industry Applications: Enhanced Thermal-Hydraulic Characteristics of Chevron Plates,” Enhanced and Multiphase Heat Transfer, R. M. Manglik and A. D. Kraus, eds., Begell House, New York, pp. 267–276.
20.
Okada
,
K.
,
Ono
,
M.
,
Tomimura
,
T.
,
Okuma
,
T.
,
Konno
,
H.
, and
Ohtani
,
S.
,
1972
, “
Design and Heat Transfer Characteristics of New Plate Heat Exchanger
,”
Heat Transfer-Jpn. Res.
,
1
, No.
1
, pp.
90
95
.
21.
Marriot
,
J.
,
1977
, “
Performance of an Alfaflex Plate Heat Exchanger
,”
Chem. Eng. Prog.
,
73
, No.
2
, pp.
73
78
.
22.
Heavner
,
R. L.
,
Kumar
,
H.
, and
Wanniarachchi
,
A. S.
,
1993
, “
Performance of an Industrial Plate Heat Exchanger: Effect of Chevron Angle
,”
AIChE Symposium Series
, ,
89
, No.
295
, pp.
262
267
.
23.
Wanniarachichi, A., Ratnam, U., Tilton, B. E., and Dutta-Roy, K., 1995, “Approximate Correlations for Chevron-Type Plate Heat Exchangers,” Proceedings of 30th National Heat Transfer Conference, HTD-314-12, ASME, New York, pp. 145–151.
24.
Thonon
,
B.
,
Vidil
,
R.
, and
Marvillet
,
C.
,
1995
, “
Recent Research and Developments in Plate Heat Exchangers
,”
Journal of Enhanced Heat Transfer
,
2
, pp.
149
155
.
25.
Focke
,
W. W.
,
Zachariades
,
J.
, and
Olivier
,
I.
,
1985
, “
The Effect of the Corrugation Inclination Angle on the Thermohydraulic Performance of Plate Heat Exchangers
,”
Int. J. Heat Mass Transf.
,
28
, No.
8
, pp.
1469
1479
.
26.
Bond
,
M. P.
, 1981, “Plate Heat Exchangers for Effective Heat Transfer,” Chem. Eng., Apr., pp. 162–167.
27.
Muley
,
A.
, and
Manglik
,
R. M.
,
1999
, “
Experimental Study of Turbulent Flow Heat Transfer and Pressure Drop in a Plate Heat Exchanger With Chevron Plates
,”
ASME J. Heat Transfer
,
121
, pp.
110
117
.
28.
Muley, A., and Manglik, R. M., 1998, “Investigation of Enhanced Heat Transfer in Low Reynolds Number Flows in a Plate Heat Exchanger,” Proceedings ASME Heat Transfer Division, 361-3, ASME, New York, pp. 295–302.
29.
Ciofalo
,
M.
,
Stasiek
,
J.
, and
Collins
,
M. W.
,
1996
, “
Investigation of Flow and Heat Transfer in Corrugated Passages—II. Numerical Simulations
,”
Int. J. Heat Mass Transf.
,
39
, No.
1
, pp.
165
192
.
30.
Shah, R. K., 1978, “Compact Heat Exchanger Surface Selection Methods,” Proceedings 6th International Heat Transfer Conference, Toronto, 4, pp. 193–199.
31.
Massardo, A. F., McDonald, C. F., and Korakianitis, T., 2000, “Microturbine/Fuel-Cell Coupling For High-Efficiency Electrical-Power Generation,” ASME Paper 2000-GT-175.
32.
Parsons, E. L., 1985, “Development, Fabrication and Application of a Primary Surface Gas Turbine Recuperator,” SAE Paper No. 851254.
You do not currently have access to this content.