This paper deals with the multicomponent nature of gas turbine fuels under high-pressure conditions. The study is motivated by the consideration that the droplet submodels that are currently employed in spray codes for predicting gas turbine combustor flows do not adequately incorporate the multicomponent fuel and high-pressure effects. The quasi-steady multicomponent droplet model has been employed to investigate conditions under which the vaporization behavior of a multicomponent fuel droplet can be represented by a surrogate pure fuel droplet. The physical system considered is that of a multicomponent fuel droplet undergoing quasi-steady vaporization in an environment characterized by its temperature, pressure, and composition. Using different vaporization models, such as infinite-diffusion and diffusion-limit models, the predicted vaporization history and other relevant properties of a bicomponent droplet are compared with those of a surrogate single-component fuel droplet over a range of parameters relevant to gas turbine combustors. Results indicate that for moderate and high-power operation, a suitably selected single-component (50 percent boiling point) fuel can be used to represent the vaporization behavior of a bicomponent fuel, provided one employs the diffusion-limit or effective-diffusivity model. Simulation of the bicomponent fuel by a surrogate fuel becomes increasingly better at higher pressures. In fact, the droplet vaporization behavior at higher pressures is observed to be more sensitive to droplet heating models rather than to liquid fuel composition. This can be attributed to increase in the droplet heatup time and reduction in the volatility differential between the constituent fuels at higher pressures. For ignition, lean blowout and idle operations, characterized by low pressure and temperature ambient, the multicomponent fuel evaporation cannot be simulated by a single-component fuel. The validity of a quasi-steady high-pressure droplet vaporization model has also been examined. The model includes the nonideal gas behavior, liquid-phase solubility of gases, and variable thermo-transport properties including their dependence on pressure. Predictions of the high-pressure droplet model show good agreement with the available experimental data over a wide range of pressures, implying that quasi-steady vaporization model can be used at pressures up to the fuel critical pressure.

1.
Westbrook
,
C. K.
,
Pitz
,
W.
, and
Warnatz
,
J.
,
1988
, “
A Detailed Chemical Kinetic Reaction Mechanism for the Oxidation of Iso-Octane and n-Heptane over an Extended Temperature Range
,”
Proc. Combust. Inst.
,
22
, pp.
893
902
.
2.
Callahan
,
C. V.
,
Held
,
T. J.
,
Dryer
,
F. L.
,
Minetti
,
R.
,
Ribaucour
,
M.
,
Sochet
,
L. R.
,
Faravelli
,
T.
,
Gaffuri
,
P.
, and
Ranzi
,
E.
,
1996
, “
Experimental Data and Kinetic Modeling of Primary Reference Fuel Mixtures
,”
Proc. Combust. Inst.
,
26
, pp.
739
746
.
3.
Newbold
,
F. R.
, and
Amundson
,
N. R.
,
1973
, “
A Model for Evaporation of a Multicomponent Droplet
,”
AIChE J.
,
19
, pp.
22
30
.
4.
Landis R. B., and Mills, A. F., 1974, “Effects of Internal Resistance on the Vaporization of Binary Droplets,” Fifth International Heat Transfer Conference, Paper B7-9, Tokyo, Japan.
5.
Law
,
C. K.
,
1982
, “
Recent Advances in Droplet Vaporization and Combustion
,”
Prog. Energy Combust. Sci.
,
8
, pp.
169
195
.
6.
Tong
,
A. Y.
, and
Sirignano
,
W. A.
,
1986
, “
Multicomponent Droplet Vaporization in a High Temperature Gas
,”
Combust. Flame
,
66
, pp.
221
235
.
7.
Abramzon, B., and Sirignano, W. A., 1989, “Droplet Vaporization Models for Spray Combustion Calculations,” 32, No. 9, pp. 1605–1618.
8.
Chen
,
G.
,
Aggarwal
,
S. K.
,
Jackson
,
T. A.
, and
Switzer
,
G. L.
,
1997
, “
Experimental Study of Pure and Multicomponent Fuel Evaporation in a Heated Air Flow
,”
Atomization Sprays
,
7
, pp.
317
337
.
9.
Aggarwal
,
S. K.
,
1987
, “
Modeling of Multicomponent Fuel Spray Vaporization
,”
Int. J. Heat Mass Transf.
,
30
, No.
9
, pp.
1949
1961
.
10.
Canada
,
G. S.
, and
Faeth
,
G. M.
,
1974
, “
Fuel Droplet Burning Rates at High Pressures
,”
Proc. Combust. Inst.
,
14
, pp.
1345
1354
.
11.
Nomura
,
H.
,
Ujiie
,
Y.
,
Rath
,
H. J.
,
Sato
,
J.
, and
Kono
,
M.
,
1996
, “
Experimental Study on High-Pressure Droplet Evaporation Using Microgravity Conditions
,”
Proc. Combust. Inst.
,
26
, pp.
1267
1273
.
12.
Stengele, J., Willmann, M., and Wittig, S., 1997, “Experimental and Theoretical Study of Droplet Vaporization in High Pressure Environment,” ASME Paper 97-GT-151.
13.
Hsieh
,
K. C.
,
Shuen
,
J. S.
, and
Yang
,
V.
,
1991
, “
Droplet Vaporization in High Pressure Environments: Near Critical Conditions
,”
Combust. Sci. Technol.
,
76
, pp.
111
132
.
14.
Curtis
,
E. W.
, and
Farrel
,
P. W.
,
1992
, “
A Numerical Study of High-Pressure Droplet Vaporization
,”
Combust. Flame
,
90
, pp.
85
102
.
15.
Jia
,
J. D.
, and
Gogos
,
G.
,
1993
, “
High-Pressure Droplet Vaporization: Effects of Liquid-Phase Gas Solubility
,”
Int. J. Heat Mass Transf.
,
36
, pp.
2403
2415
.
16.
Stengele, J., Bauer, H.-J., and Wittig, S., 1996, “Numerical Study of Bicomponent Droplet Vaporization in a High Pressure Environment,” ASME Paper 96-GT-442.
17.
Zhu
,
G.
, and
Aggarwal
,
S. K.
,
2000
, “
Transient Supercritical Droplet Evaporation With Emphasis on the Effects of Equation of State
,”
Int. J. Heat Mass Transf.
,
43
, No.
7
, pp.
1157
1171
.
18.
Gilver
,
S. D.
, and
Abraham
,
J.
,
1996
, “
Supercritical Droplet Vaporization and Combustion Studies
,”
Prog. Energy Combust. Sci.
,
22
, pp.
1
28
.
19.
Aggarwal, S. K., Shu, Z., Mongia, H., and Hura, H., 1998, “Multicomponent Fuel Effects on the Vaporization of a Surrogate Single-Component Fuel Droplet,” Paper 98-0157, 36th Aerospace Sciences Meeting, Reno, NV, Jan. 12–15.
20.
Reid, R. C., Prausnitz, J. M., and Polin, B. E., 1987, The Properties of Gases and Liquids, 4th Ed., McGraw-Hill, New York.
21.
Ruszalo
,
R.
, and
Hallett
,
W. L. H.
,
1992
, “
A Model for the Autoignition of Single Liquid Droplets at High Pressure
,”
Combust. Sci. Technol.
,
86
, pp.
183
197
.
22.
Benmekki, E. H., 1988, “Fluid Phase Equilibria with Theoretical and Semi-Empirical Equation of State Model,” Ph.D. thesis, University of Illinois at Chicago, Chicago, IL.
23.
Aggarwal, S. K., Shu, Z., Mongia, H., and Hura, H. S., 1998, “Multicomponent and Single-Component Fuel Droplet Vaporization Under High Pressure Conditions,” Paper 98-3933, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, July 13–15.
24.
Knapp
,
H.
,
Doring
,
R.
,
Oellrich
,
L.
,
Plocker
,
U.
, and
Prausnitz
,
J. M.
,
1982
, “
Vapor-Liquid Equilibria for Mixtures of Low Boiling Substances
,”
J. Chem. Eng. Data
VI DECHEMA Frankfurt.
25.
Vargaftik, N. B., and Touloukian, Y. S., 1983, Handbook of Physical Properties of Liquids and Gases: Pure Substances and Mixture, 2nd Ed., Hemisphere, Washington, DC.
26.
Lide, R. David, 1994, CRC Handbook of Chemistry and Physics 1913–1995, 74th Ed., Chemical Rubber Publishing Company, Boca Raton, FL.
27.
Ho, C. Y., Liley, P. C., Makita, T., and Tanaka, Y, 1988, CINDAS, Data Series on Material Properties Volume V-1: Properties of Inorganic and Organic Fluids, Hemisphere, Washington, DC.
28.
Kee, R. J., Miller, J. A., and Warnatz, J., 1983, “A Fortran Program Package for the Evaluation of Gas-Phase Viscosities, Conductivities, and Diffusion Coefficients,” Sandia National Laboratories Report SAND83-8209.
29.
Aggarwal
,
S. K.
,
1989
, “
Ignition Behavior of a Dilute Multicomponent Fuel Spray
,”
Combust. Flame
,
76
, pp.
5
15
.
You do not currently have access to this content.