Plasma-sprayed mullite 3Al2O3s˙2SiO2 and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon-based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond. [S0742-4795(00)03203-8]

1.
Jacobson, N. S., Smialek, I. L., and Fox, D. S., 1990, “Molten Salt Corrosion of SiC and Si3N4,” in Handbook of Ceramics and Composites, Vol. 1, Cheremisinoff, N. S., ed., Marcel Dekker, New York, pp. 99–135.
2.
Pareek
,
V.
, and
Shores
,
D. A.
,
1993
, “
Oxidation of Silicon Carbide in Environments Containing Potassium Salt Vapor
,”
J. Am. Ceram. Soc.
,
74
, No.
3
, pp.
556
563
.
3.
Hashimoto
,
A.
,
1992
, “
The Effect of H2O Gas on Volatilities of Planet-Forming Major Elements: I—Experimental Determination of Thermodynamic Properties of Ca-, Al-, and Si-hydroxide Gas Molecules and Its Application to the Solar Nebula
,”
Geochim. Cosmochim. Acta
,
56
, pp.
511
532
.
4.
Opila
,
E. J.
, and
Hann
,
R.
,
1997
, “
Paralinear Oxidation of CVD SiC in Water Vapor
,”
J. Am. Ceram. Soc.
,
80
, No.
1
, pp.
197
205
.
5.
Opila
,
E. J.
,
Fox
,
D. S.
, and
Jacobson
,
N. S.
,
1997
, “
Mass Spectrometric Identification of Si(OH)4 from the Reaction of Silica and Water Vapor
,”
J. Am. Ceram. Soc.
,
80
, No.
4
, pp
1009
1012
.
6.
Pettit, F. S., and Giggins, C. S., 1987, Superalloys II, C. T. Sims, N. S. Stoloff, and W. C. Hage, eds., Wiley, New York, p. 327.
7.
Jacobson
,
N. S.
,
1993
, “
Corrosion of Silicon-Based Ceramics in Combustion Environments
,”
J. Am. Ceram. Soc.
,
76
, No.
1
, pp.
3
28
.
8.
Price
,
J. R.
,
van Roode
,
M.
, and
Stala
,
C.
,
1992
, “
Ceramic Oxide-Coated Silicon Carbide for High-Temperature Corrosive Environments
,”
Key Eng. Mater.
,
72–74
, pp.
71
84
.
9.
Federer
,
J. I.
,
1990
, “
Alumina Base Coatings for Protection of SiC Ceramics
,”
J. Mater. Eng.
,
12
, No.
2
, pp.
141
149
.
10.
Lee
,
K. N.
,
Miller
,
R. A.
, and
Jacobson
,
N. S.
,
1995
, “
New Generation of Plasma-Sprayed Mullite Coatings on Silicon-Carbide
,”
J. Am. Ceram. Soc.
,
78
, No.
3
, pp.
705
710
.
11.
Lee
,
K. N.
,
Jacobson
,
N. S.
, and
Miller
,
R. A.
,
1994
, “
Refractory Oxide Coatings on SiC Ceramics
,”
MRS Bull.
,
XIX
, No.
10
, pp.
35
38
.
12.
Lee
,
K. N.
, and
Miller
,
R. A.
,
1996
, “
Oxidation Behavior of Mullite-Coated SiC and SiC/SiC Composites Under Thermal Cycling between Room Temperature and 1200–1400 °C
,”
J. Am. Ceram. Soc.
,
79
, No.
3
, pp.
620
626
.
13.
Lee
,
K. N.
, and
Miller
,
R. A.
,
1996
, “
Development and Environmental Durability of Mullite and Mullite/YSZ Dual Layer Coatings for SiC and Si3N4 Ceramics
,”
Surf. Coat. Technol.
,
86–87
, pp.
142
148
.
14.
Jacobson
,
N. S.
,
Lee
,
K. N.
, and
Yoshio
,
T. Y.
,
1996
, “
Corrosion of Mullite By Molten Salts
,”
J. Am. Ceram. Soc.
,
79
, No.
8
, pp.
2161
2167
.
15.
Lee, K. N., Miller, R. A., Jacobson, N. S., and Opila, E. J., 1995, “Environmental Durability of Mullite Coating/SiC and Mullite-YSZ Coating/SiC Systems,” Ceram. Eng. Sci. Proc., September–October, pp. 1037–1044.
16.
Lee, K. N., and Miller, R. A., 2000, “Durability of Mullite/YSZ-Coated SiC in 90 percent H2O/O2,” Adv. Ceram. Matrix Compos., IV, pp. 17–25.
17.
Lee
,
K. N.
,
1998
, “
Contamination Effects on Interfacial Porosity During Cyclic Oxidation of Mullite-Coated SiC
,”
J. Am. Ceram. Soc.
,
81
, No.
12
, pp.
3329
3339
.
18.
Lamkin
,
M. A.
,
Riley
,
F. L.
, and
Fordham
,
R. L.
,
1992
, “
Oxygen Mobility in Silicon Dioxide and Silicate Glasses
,”
J. Eur. Ceram. Soc.
,
10
, pp.
347
367
.
19.
Lee, K. N., and Miller, R. A., 1997, “Modification of Mullite-Based Coatings on Si-Based Ceramics for Enhanced Durability,” HITEMP Review, III, NASA Lewis Research Center, Cleveland, OH, p. 45.
20.
Heintz
,
G. N.
, and
Uematsu
,
U.
,
1992
, “
Preparation and Structures of Plasma-Sprayed γ and α-alumina Coatings
,”
Surf. Coat. Technol.
,
50
, pp.
213
222
.
21.
Lee, K. N., 1998, NASA Glenn Research Center, unpublished research.
22.
Holloway, D. G., 1973, The Physical Properties of Glass, Wykeham Publications, London, U.K.
23.
Aksay
,
I. A.
, and
Pask
,
J. A.
,
1975
, “
Stable and Metastable Equilibria in the System SiO2-Al2O3,
J. Am. Ceram. Soc.
,
58
, Nos.
11–12
, pp.
507
512
.
24.
Kriven
,
W. M.
, and
Pask
,
J. A.
,
1983
, “
Solid Solution Range and Microstructure of Melt-Grown Mullite
,”
J. Am. Ceram. Soc.
,
66
, No.
9
, pp.
649
654
.
25.
Martinelli
,
A. E.
, and
Drew
,
R. A. L.
,
1995
, “
Microstructure Development During Diffusion Bonding of α-Silicon Carbide to Molybdenum
,”
Mater. Sci. Eng., A
,
191
, pp.
239
247
.
26.
Martinelli
,
A. E.
,
Drew
,
R. A. L.
, and
Berriche
,
R.
,
1996
, “
Correlation Between the Strength of SiC-Mo Diffusion Couples and the Mechanical Properties of the Interfacial Reaction Products
,”
J. Mater. Sci. Lett.
,
15
, pp.
307
310
.
You do not currently have access to this content.