The computer program CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing the power law, Paris law, or Walker equation. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. Application of this design methodology is demonstrated using experimental data from alumina bar and disk flexure specimens, which exhibit SCG when exposed to water.

1.
Nemeth, N. N., Powers, L. M., Janosik, L. A., and Gyekenyesi, J. P., “Ceramics Analysis and Reliability Evaluation of Structures LIFE prediction program (CARES/LIFE) Users and Programmers Manual,” TM-106316, to be published.
2.
Chao, L. Y., and Shetty, D. K., “Time-Dependent Strength Degradation and Reliability of an Alumina Ceramic Subjected to Biaxial Flexure,” Life Prediction Methodologies and Data for Ceramic Materials, ASTM STP 1201, C. R. Brinkman and S. F. Duffy, eds., American Society for Testing and Materials, Philadelphia, 1993.
3.
Nemeth, N. N., Manderscheid, J. M., and Gyekenyesi, J. P., “Ceramics Analysis and Reliability Evaluation of Structures (CARES),” NASA TP-2916, Aug., 1990.
4.
Powers, L. M., Starlinger, A., and Gyekenyesi, J. P., “Ceramic Component Reliability With the Restructured NASA/CARES Computer Program,” NASA TM-105856, Sept., 1992.
5.
Barnett, R. L., Connors, C. L., Hermann, P. C., and Wingfield, J. R., “Fracture of Brittle Materials Under Transient Mechanical and Thermal Loading,” U. S. Air Force Flight Dynamics Laboratory, AFFDL-TR-66-220, (NTIS AD-649978), 1967.
6.
Freudenthal, A. M., “Statistical Approach to Brittle Fracture,” in: Fracture, Vol. 2: An Advanced Treatise, Mathematical Fundamentals, H. Liebowitz, ed., Academic Press, 1968, pp. 591–619.
7.
Weibull, W. A., “The Phenomenon of Rupture in Solids,” Ingenoirs Vetenskaps Akadanien Handlinger, No. 153, 1939.
8.
Batdorf
S. B.
, and
Crose
J. G.
, “
A Statistical Theory for the Fracture of Brittle Structures Subjected to Nonuniform Polyaxial Stresses
,”
ASME Journal of Applied Mechanics
, Vol.
41
, No.
2
, June,
1974
, pp.
459
464
.
9.
Batdorf
S. B.
, and
Heinisch
H. L.
, “
Weakest Link Theory Reformulated for Arbitrary Fracture Criterion
,”
Journal of the American Ceramic Society
, Vol.
61
, No.
7–8
, July–Aug.,
1978
, pp.
355
358
.
10.
Palaniswamy
K.
, and
Knauss
W. G.
, “
On the Problem of Crack Extension in Brittle Solids Under General Loading
,”
Mechanics Today
, Vol.
4
,
1978
, pp.
87
148
.
11.
Shetty
D. K.
, “
Mixed-Mode Fracture Criteria for Reliability Analysis and Design With Structural Ceramics
,”
ASME JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER
, Vol.
109
, No.
3
, July,
1987
, pp.
282
289
.
12.
Evans
A. G.
, “
A General Approach for the Statistical Analysis of Multiaxial Fracture
,”
Journal of the American Ceramic Society
, Vol.
61
,
1978
, pp.
302
306
.
13.
Matsuo, Y., Trans, of the Japan Society of Mechanical Engineers, Vol. 46, 1980, pp. 605–611.
14.
Evans
A. G.
, and
Wiederhorn
S. M.
, “
Crack Propagation and Failure Prediction in Silicon Nitride at Elevated Temperatures
,”
Journal of Material Science
, Vol.
9
,
1974
, pp.
270
278
.
15.
Wiederhorn, S. M., Fracture Mechanics of Ceramics, R. C. Bradt, D. P. Hasselman, and F. F. Lange, eds., Plenum, New York, 1974, pp. 613–646.
16.
Paris
P.
, and
Erdogan
F.
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME Journal of Basic Engineering
, Vol.
85
,
1963
, pp.
528
534
.
17.
Walker, K., “The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum,” ASTM STP 462, 1970, pp. 1–14.
18.
Dauskardt
R. H.
,
James
M. R.
,
Porter
J. R.
, and
Ritchie
R. O.
, “
Cyclic Fatigue Crack Growth in SiC-Whisker-Reinforced Alumina Ceramic Composite: Long and Small Crack Behavior
,”
Journal of the American Ceramic Society
, Vol.
75
, No.
4
,
1992
, pp.
759
771
.
19.
Paris, P. C., and Sih, G. C, Stress Analysis of Cracks, ASTM STP 381, 1965, pp. 30–83.
20.
Thiemeier, T., “Lebensdauervorhersage fun Keramische Bauteile Unter Mehrachsiger Beanspruchung,” Ph.D. dissertation, University of Karlesruhe, Germany, 1989.
21.
Sturmer, G., Schulz, A., and Wittig, S., “Lifetime Prediction for Ceramic Gas Turbine Components,” ASME Preprint 91-GT-96, June 3–6, 1991.
22.
Batdorf, S. B., “Fundamentals of the Statistical Theory of Fracture,” Fracture Mechanics of Ceramics, Vol. 3, R. C. Bradt, D. P. H. Hasselman, and F. F. Lange, eds., Plenum Press, New York, 1978, pp. 1–30.
23.
Mencik, J., “Rationalized Load and Lifetime of Brittle Materials,” Communications of the American Ceramic Society, Mar., 1984, pp. C37–C40.
24.
Evans, A. G., “Fatigue in Ceramics,” International Journal of Fracture, Dec, 1980, pp. 485–498.
25.
Jakus
K.
,
Coyne
D. C.
, and
Ritter
J. E.
, “
Analysis of Fatigue Data for Lifetime Predictions for Ceramic Materials
,”
Journal of Material Science
, Vol.
13
,
1978
, pp.
2071
2080
.
26.
Pai, S. S., and Gyekenyesi, J. P., “Calculation of the Weibull Strength Parameters and Batdorf Flaw Density Constants for Volume and Surface-Flaw-Induced Fracture in Ceramics,” NASA TM-100890, 1988.
27.
Thoman
D. R.
,
Bain
L. J.
, and
Antle
C. E.
, “
Inferences on the Parameters of the Weibull Distribution
,”
Technometrics
, Vol.
11
, No.
3
, Aug.,
1969
, pp.
445
460
.
This content is only available via PDF.
You do not currently have access to this content.