The ever-increasing size of cogeneration facilities has mandated the need for noise abatement in the design stage. Many noise projection models are available to the industry for predicting noise levels in and adjacent to new installations. However, the models all require accurate source noise information if valid noise predictions are to be expected. As a consequence of designing one of the world’s largest cogeneration installations involving eight Model W-701 turbine units and their Heat Recovery Steam Generators (HRSGs), it became apparent that the attention between the exhaust of the turbine and the outlet of the HRSGs was not well known. Not having this information posed potentially expensive noise abatement modifications during the design and construction phases. In order to verify the adequacy of scaling studies from a W-501 turbine and HRSG to the W-701 system, a comprehensive field test of an existing W-501 installation was conducted. This paper describes the design of an acoustic intensity and sound pressure probe to operate inside the high-temperature ductwork, the access engineering required, data acquisition, and final results concerning noise attenuation across the HRSG.

This content is only available via PDF.
You do not currently have access to this content.