A bilinear finite element, implicit Runge-Kutta space-time discretization has been established for an aerodynamics weak statement CFD algorithm. The algorithm admits real-gas effect simulation, for reliable hypersonic flow characterization, via an equilibrium reacting air model. The terminal algebraic system is solved using an efficient block-tridiagonal quasi-Newton linear algebra procedure that employs tensor matrix product factorizations within a lexicographic mesh-sweeping protocol. A block solution-adaptive remeshing, for totally arbitrary convex elements, is also utilized to facilitate accurate shock and/or boundary layer flow resolution. Numerical validations are presented for representative benchmark supersonic-hypersonic aerodynamics problem statements.

This content is only available via PDF.
You do not currently have access to this content.