Detailed measurements of wavy liquid films driven by the shear stress of turbulent air flow are obtained for different air temperatures, air velocities, and flow rates of the liquid. The experimental conditions are chosen from characteristic data of liquid film flow in prefilming airblast atomizers and film vaporization employing combustors. For the measurement of the local film thickness and film velocity a new optical instrument—based on the light absorption of the liquid—has been developed, which can be used at high temperatures with evaporation. The measured data of the gas phase and the liquid film are compared with the results of a numerical code using a laminar as well as a turbulent model for the film flow and a standard numerical finite volume code for the gas phase. The results utilizing the two models for the liquid film show that the film exhibits laminar rather than turbulent characteristics under a wide range of flow conditions. This is of considerable interest when heat is transferred across the film by heating or cooling of the wall. With this information the optical instrument can also be used to determine the local shear stress of the gas phase at the phase interface. Using time-averaged values for the thickness, the velocity, and the roughness of the film, the code leads to relatively accurate predictions of the interaction of the liquid film with the gas phase.
Skip Nav Destination
Article navigation
April 1992
Research Papers
Motion and Evaporation of Shear-Driven Liquid Films in Turbulent Gases
S. Wittig,
S. Wittig
Lehrstuhl und Institut fu¨r Thermische Stro¨mungsmaschinen, Universita¨t Karlsruhe (T.H.), Karlsruhe, Germany
Search for other works by this author on:
J. Himmelsbach,
J. Himmelsbach
Lehrstuhl und Institut fu¨r Thermische Stro¨mungsmaschinen, Universita¨t Karlsruhe (T.H.), Karlsruhe, Germany
Search for other works by this author on:
B. Noll,
B. Noll
Lehrstuhl und Institut fu¨r Thermische Stro¨mungsmaschinen, Universita¨t Karlsruhe (T.H.), Karlsruhe, Germany
Search for other works by this author on:
H. J. Feld,
H. J. Feld
Lehrstuhl und Institut fu¨r Thermische Stro¨mungsmaschinen, Universita¨t Karlsruhe (T.H.), Karlsruhe, Germany
Search for other works by this author on:
W. Samenfink
W. Samenfink
Lehrstuhl und Institut fu¨r Thermische Stro¨mungsmaschinen, Universita¨t Karlsruhe (T.H.), Karlsruhe, Germany
Search for other works by this author on:
S. Wittig
Lehrstuhl und Institut fu¨r Thermische Stro¨mungsmaschinen, Universita¨t Karlsruhe (T.H.), Karlsruhe, Germany
J. Himmelsbach
Lehrstuhl und Institut fu¨r Thermische Stro¨mungsmaschinen, Universita¨t Karlsruhe (T.H.), Karlsruhe, Germany
B. Noll
Lehrstuhl und Institut fu¨r Thermische Stro¨mungsmaschinen, Universita¨t Karlsruhe (T.H.), Karlsruhe, Germany
H. J. Feld
Lehrstuhl und Institut fu¨r Thermische Stro¨mungsmaschinen, Universita¨t Karlsruhe (T.H.), Karlsruhe, Germany
W. Samenfink
Lehrstuhl und Institut fu¨r Thermische Stro¨mungsmaschinen, Universita¨t Karlsruhe (T.H.), Karlsruhe, Germany
J. Eng. Gas Turbines Power. Apr 1992, 114(2): 395-400 (6 pages)
Published Online: April 1, 1992
Article history
Received:
February 19, 1991
Online:
April 24, 2008
Citation
Wittig, S., Himmelsbach, J., Noll, B., Feld, H. J., and Samenfink, W. (April 1, 1992). "Motion and Evaporation of Shear-Driven Liquid Films in Turbulent Gases." ASME. J. Eng. Gas Turbines Power. April 1992; 114(2): 395–400. https://doi.org/10.1115/1.2906604
Download citation file:
Get Email Alerts
Accelerating Chemical Kinetics Calculations with Physics Informed Neural Networks
J. Eng. Gas Turbines Power
Fully Coupled Analysis of Flutter Induced Limit Cycles: Frequency Versus Time Domain Methods
J. Eng. Gas Turbines Power (July 2023)
Impact of Ignition Assistant on Combustion of Cetane 30 and 35 Jet-Fuel Blends in a Compression-Ignition Engine at Moderate Load and Speed
J. Eng. Gas Turbines Power (July 2023)
Related Articles
Experimental and Numerical Investigation on the Evaporation of Shear-Driven Multicomponent Liquid Wall Films
J. Eng. Gas Turbines Power (July,2001)
Droplet Entrainment From a Shear-Driven Liquid Wall Film in Inclined Ducts: Experimental Study and Correlation Comparison
J. Eng. Gas Turbines Power (October,2002)
An Accurate Low Dimension Model for the Waves on Thin Layer Fluid Flowing Down an Inclined Plane
J. Appl. Mech (November,2009)
Related Proceedings Papers
Related Chapters
Thermodynamic Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Thermal Interface Resistance
Thermal Management of Microelectronic Equipment