Turbulence properties were investigated in and around the recirculation zone produced by a 45 deg conical flame stabilizer of 25 percent blockage ratio confined in a pipe supplied with a turbulent premixed methane-air mixture at a Reynolds number of 5.7×104. A three-component LDA system was used for measuring mean velocities, turbulence intensities, Reynolds stresses, skewness, kurtosis, and turbulent kinetic energy. It was found that wall confinement elongates the recirculation zone by accelerating the flow and narrows it by preventing mean streamline curvature. For confined flames, turbulence production is mainly due to shear stress-mean strain interaction. In the region of maximum recirculation zone width and around the stagnation point, the outer stretched flame resembles a normal mixing layer and gradient-diffusion closure for velocity holds. However, and in the absence of turbulent heat flux data, countergradient diffusion cannot be ruled out. Finally, and because of the suppression of mean streamline curvature by confinement, in combusting flow, the production of turbulence is only up to 33 percent of its damping due to dilatation and dissipation.

This content is only available via PDF.
You do not currently have access to this content.