An efficient oil film damper known as a porous squeeze film damper (PSFD) was developed for more effective and reliable vibration control of high-speed rotors based on the conventional squeeze film damper (SFD). The outer race of the PSFD is made of permeable sintered porous metal materials. The permeability allows some of the oil to permeate into and seep out of the porous matrix, with remarkable improvement of the squeeze film damping properties. The characteristics of PSFD oil film stiffness and damping coefficients and permeability, and also, the steady-state unbalance response of a simple rigid rotor and flexible Jeffcott’s rotor supported on PSFD and SFD are investigated. A typical experiment is presented. Investigations show that the nonlinear vibration characteristics of the unpressurized SFD system such as bistable jump phenomena and “lockup” at rotor pin-pin critical speeds could be avoided and virtually disappear under much greater unbalance levels with properly designed PSFD system. PSFD has the potential advantage of operating effectively under relatively large unbalance conditions.

This content is only available via PDF.
You do not currently have access to this content.