Optimization techniques are, in general, still not used today in the design and performance analysis of thermal systems and their components. The engineer’s search for the best system configuration is based solely on rules-of-thumb and not on a systematic, analytical determination of what the optimal design or performance should be. In addition, economic factors are not directly tied to thermodynamic ones; therefore, the economic ramifications of thermodynamic changes to the system are not usually, if ever, immediately apparent. A general analytical approach that directly determines the optimum thermodynamic and econmic behavior of thermal systems is discussed and illustrated using Rankine cycles. Utilizing the Second Law and typical Second Law costing techniques, this method provides for the creation of mathematical models that balance a cycle’s operating costs and capital expenditures. Such models can be solved numerically, subject to various constraints, for the optimum design and performance of thermal systems.

This content is only available via PDF.
You do not currently have access to this content.