The structure of developing flows inside curved channels has been investigated numerically using the time-averaged Navier Stokes equations in three dimensions. The equations are solved in primitive variables using finite difference techniques. The solution procedure involves a combination of repeated space-marching integration of the governing equations and correction for elliptic effects between two marching sweeps. Type-dependent differencing is used to permit downstream marching even in the reverse-flow regions. The procedure is shown to allow efficient calculations of turbulent flow inside strongly curved channels as well as laminar flow inside a moderately curved passage. Results obtained in both cases indicate that the flow structure is strongly controlled by local imbalance between centrifugal forces and pressure gradients. Furthermore, distortion of primary flow due to migration of low momentum fluid caused by secondary flow is found to be largely dependent on the Reynolds number and Dean number. Comparison with experimental data is also included.

This content is only available via PDF.
You do not currently have access to this content.