A theoretical investigation is presented concerning the aerodynamic performance of the Wells turbine, a self-rectifying, axial-flow turbine suitable for energy extraction from a reciprocating air flow. A two-dimensional analysis is developed, and expressions, based on potential flow, are derived for the blade shape maximizing the turbine efficiency. Three-dimensional effects and profile losses are then accounted for by means of an actuator disk theory, which shows that large radial distortions of axial velocity profile can occur, depending on blade shape, with important implications on the extent of the stall-free conditions.

This content is only available via PDF.
You do not currently have access to this content.