An experimental heat transfer study on a concavely curved turbulent boundary layer has been performed. A new, instantaneous heat transfer measurement technique utilizing liquid crystals was used to provide a vivid picture of the local distribution of surface heat transfer coefficient. Large scale wall traces, composed of streak patterns on the surface, were observed to appear and disappear at random, but there was no evidence of a spanwise stationary heat transfer distribution, nor any evidence of large scale structures resembling Taylor-Gortler vortices. The use of a two-dimensional computation scheme to predict heat transfer rates in concave curvature regions seems justifiable.

This content is only available via PDF.
You do not currently have access to this content.