This paper describes a systematic computational design system for two-dimensional turbine cascades. The system includes a sequence of calculations in which airfoil profiles are designed from velocity diagram requirements and specified geometric parameters, followed by an inviscid global streamline curvature analysis, a magnified reanalysis around the leading edge, and a transitional profile boundary layer and wake mixing analysis. A finite area technique and a body-fitted mesh are used for the reanalysis. The boundary layer analysis is performed using the dissipation-integral method of Walz which has been modified in the present application. Several turbine airfoil profile geometry designs are presented. Also two sample cascade design cases and their calculated performance for a range of Mach numbers and incidence angles are given and discussed.

This content is only available via PDF.
You do not currently have access to this content.