A procedure for analyzing the vibrations of rotating turbomachinery blades has been previously developed. This procedure is based upon shallow shell theory, and utilizes the Ritz method to determine frequencies and mode shapes. However, it has been limited heretofore to blades of uniform thickness, uniform curvature, and/or twist and rectangular planform. The present work shows how the procedure may be generalized to eliminate the aforementioned restrictions. Nonrectangular planforms are dealt with by a suitable coordinate transformation. This, as well as variable thickness, curvature and twist, require using numerical integration. The procedure is demonstrated on four examples of cantilevered blades for which theoretical and experimental data have been previously published: (1) flat plate with spanwise taper, (2) flat plate with chordwise taper, (3) twisted plate with chordwise taper, and (4) cylindrical shell with chordwise taper.

This content is only available via PDF.
You do not currently have access to this content.